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We train an object detector built from convolutional neural networks to count interference
fringes in elliptical antinode regions in frames of high-speed video recordings of transient oscil-
lations in Caribbean steelpan drums illuminated by electronic speckle pattern interferometry
(ESPI). The annotations provided by our model aim to contribute to the understanding of
time-dependent behavior in such drums by tracking the development of sympathetic vibra-
tion modes. The system is trained on a dataset of crowdsourced human-annotated images
obtained from the Zooniverse Steelpan Vibrations Project. Due to the small number of
human-annotated images and the ambiguity of the annotation task, we also evaluate the
model on a large corpus of synthetic images whose properties have been matched to the
real images by style transfer using a Generative Adversarial Network. Applying the model to
thousands of unlabeled video frames, we measure oscillations consistent with audio recordings
of these drum strikes. One unanticipated result is that sympathetic oscillations of higher-
octave notes significantly precede the rise in sound intensity of the corresponding second
harmonic tones; the mechanism responsible for this remains unidentified. This paper pri-
marily concerns the development of the predictive model; further exploration of the steelpan
images and deeper physical insights await its further application.
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I. INTRODUCTION

Electronic Speckle Pattern Interferometry (ESPI)
has proven to be an effective technique for musical acous-
tics research. ESPI provides a means for the measure-
ment and visualization of vibrating plates and mem-
branes making up musical instruments such as violins,
guitars, drums, and others.1,2 ESPI offers the capability
of making amplitude measurements for small vibrations;
time-averaged ESPI produces images with light and dark
fringes which are lines of constant surface deformation
proportional to the wavelength of the laser light. These
images are similar to Chladni patterns in that they re-
veal the mode shapes of vibrating surfaces, (although
typically Chladni patterns are used to reveal standing
wave patterns whereas the images in the present paper
are of transient phenomena). While lacking the full spa-
tial resolution of traditional film-based laser holography
images,3 the relatively low cost and ease of setup make
ESPI a popular choice for researchers and educators.4

The use of high-speed video of ESPI images has been
applied to the case of Caribbean steelpan drums.5 The
steelpan drum is a membranophone that originated in
Trinidad and Tobago as instrument-makers re-purposed
steel oil drums,6 stretching the steel into a concave sur-
face and dividing it into a set of flattened, tuned subdo-
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mains often referred to simply as “notes.” It is played
using straight sticks tipped with rubber. When a par-
ticular note is struck, waves emanate from the point of
impact. At the boundary for the note, some of the wave
energy is reflected and sets up standing waves,7 while
the remainder propagates throughout the full steelpan
domain and triggers sympathetic vibrations among the
other notes. An accurate characterization of the sympa-
thetic vibration time evolution has yet to be realized.8,9

A fundamental question is how much of the sound of the
drum is due to nontrivial time-dependent behavior of the
drum notes (as opposed to steady-state resonant modes).

To better understand the full dynamics at work in
the steelpan, high-speed ESPI images merit closer, quan-
titative measurements, and yet the enormous quantity of
frames recorded poses a burden on researchers to prop-
erly annotate and catalog what is seen in the images.
Thus the “Steelpan Vibrations Project” (SVP)10 was
formed in partnership with the Zooniverse.org11 platform
for crowdsourced data analysis. Zooniverse arose in the
context of large-scale sky surveys of galaxies, relying on
human volunteers from around the world to use a World
Wide Web interface to annotate the images and classify
the galaxies seen in the images.12 The specific nature of
the annotation used in the SVP will be described in Sec-
tion II A.

As the SVP progressed, it became apparent that an
insufficient number of volunteers were contributing to
the project, such that progress in annotating the large
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dataset of images was slow. In addition, because of the
variation in human annotators’ work, having multiple
volunteers’ annotations of the same image was deemed
necessary,13 further slowing the progress of using these
annotations to understand the dynamics of the steelpan.
Thus the use of automated annotation methods merited
exploration.

While traditional methods of ellipse detection such
as the Elliptical Hough Transform14 can be effective for
smooth, well-defined ellipse features, the noisy and highly
variable nature of the ellipse regions in SVP images, com-
bined with the additional task of counting the rings per
antinode, make the Elliptical Hough Transform a poor
fit for this task. There are adaptions to account for in-
complete shapes and noise15,16, however the presence of
labels via the SVP made us interested in a machine learn-
ing approach. Thus we sought to adapt methods of neural
network based object detection models to our unique use
case.

The success of machine-learning systems at ex-
tending the image-annotation efforts of humans has
been demonstrated in a variety of domains. Notably,
image-classification challenges involving the recognition
of handwritten numerical digits17 and images of var-
ious animals and vehicles.18,19 The task of localizing
and classifying portions of images is known as “object
detection;”20 typical uses include surveillance systems
and satellite imagery analysis21 as well as astronomy
applications22 such as galaxy classification.23

Multiple algorithms exist for object detection, and
among the most popular and successful in recent
years24–26 are those which rely on convolutional neural
networks (CNN) that reduce each image into a (large)
set of learned features that are then fed into a fully-
connected layer to predict locations of objects and their
classifications. The scheme used for SPNet is inspired by
that of YOLOv2,27 but uses one of a variety of “stock”
CNN base models, along with a few important modifica-
tions specific to the domain of ESPI imagery of steelpan
drums, and the annotation task of the SVP, as follows:
Most object detectors operate on color images of every-
day objects, animals, and people found in datasets such
as ImageNet28, whereas the SVP task required the resolu-
tion of constantly-changing patterns in grainy, grayscale
images. Most object detectors provide classifications of
their objects, whereas the SVP task required regression
to “count” interference fringes. While CNNs are known
to perform well at detecting and classifying textures29,30

or for counting numbers of objects or people31, their use
to “count” rings (or, phrased more carefully, to discover
correlations between image patterns and ring counts)
which may have similar “texture” but different spatial ex-
tents, was not an application that we observed to have re-
ceived widespread attention. Most object detectors make
location predictions for rectangular regions of images,
whereas the SVP required tracking antinodes within el-
liptical regions. When we began work in 2017, ellipti-
cal object detectors were not in widespread use, however
while preparing this paper a classifier for wood knots was

published32 which uses a different scheme from what we
present here.

The paper is organized as follows: Section II presents
details of the SPNet algorithm and training. Section III
presents some performance metrics, Section IV presents
preliminary physics results, and Section V provides a
discussion of these results. A separate paper discussing
these and further physics results is in preparation.

For the purpose of reproducibility, the SPNet
computer code is available at https://github.com/
drscotthawley/spnet, and two of the datasets used
have been released on Zenodo.33

II. SPNET DESIGN

A. The Steelpan Vibrations Project (SVP)

Volunteers recruited for the SVP are presented with
randomly-selected frames from high-speed videos such as
the grayscale image shown in Figure 1a, and are tasked
with using a web interface to place elliptical bound-
aries around the antinode regions (as shown in green),
along with counting the number of interference fringes
or “rings” for each antinode. Multiple videos for differ-
ent steelpan-strikes are available, which show different
regions of the (same) steelpan being excited.

The frames that are included in the SVP are taken
from an ESPI optical arrangement and were captured by
a high-speed camera and processed by image subtraction
of a reference frame from individual video frames after
the drum has been struck. The drum was struck on the
back side of the note such that the front side of the note
would be unobstructed to the camera’s view. The drum

FIG. 1. (color online) Illustration of Steelpan Vibrations

Project10 (SVP) task: Ellipses “drawn” (in green) by hu-

man annotators around antinodes in an ESPI steelpan video

frame via the Zooniverse crowd-sourcing data annotation in-

terface. Not shown: Annotations also include users’ counts of

the number of interference fringes or rings for each antinode

region.
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was struck with a metal ball driver held by hand at am-
plitudes well below the typical playing conditions. The
vibration amplitudes must be small to be able to be seen
clearly in the ESPI frames.

For the SVP classification task, organizers required
that at least 15 people supply annotations for a given
video frame (image) before it could be analysed for
clustering13 and then for each antinode in a frame, at
least 5 annotations would be needed. For example, for
an image with 3 antinodes, ideally there would be 45 an-
notations, which were grouped via cluster in X and Y di-
rections. If a volunteer’s suggestion was too far from the
average (e.g., their mouse slipped) then it was not con-
sidered. Then averages were performed over the ellipse
parameters and number of fringes, these averages were
written to a file, which comprised the ”raw” or ”ground
truth” data for training the SPNet model. As indicated
in Figure 2, from frame-to-frame, some antinode regions
will appear or disappear. Beyond variability among vol-
unteers, it can be very much a “human judgement call”‘
as to whether a given ring-shape should be marked as an
antinode or not; volunteers were exposed to one frame at
a time rather than viewing video. Even with the bene-
fit of viewing multiple frames, the authors of this paper
(who may be considered to provide an “above-average”
level of consistency as annotators), it is not always clear
– especially immediately after a strike – which shapes to
mark as antinodes. Furthermore, often the struck note
would exhibit a “twin aninode” structure resulting from
its excited 2nd harmonic, in which case annotators may
have drawn an ellipse around the whole note, or drawn
two ellipses around the two (alternating) sections of the
note. This is perhaps at variance with the experience of
many machine learning enthusiasts who are accustomed
to working with very clean datasets and/or well-defined
tasks. To better clarify the difficulty of performing the
task with consistency, we invite readers to visit the SVP
website10 and try annotating several images themselves.
Continuing our example from above, if 11 of the 15 people
missed one of the 3 antinodes, then it would be rejected
and not included in the dataset at all for that frame.

Regarding the variability in volunteers’ ring counts:
When we compute the standard deviations of volunteers’
ring counts of each antinode and average over all antin-
odes, we find a value of 1.7. This is considerably wider
than the ±0.5 used for scoring the SPNet model’s accu-
racy, below. For a standard deviation of 1.7, the area un-
der a normal probability distribution within ±0.5 of the
mean is approximately 0.23, which implies a typical vol-
unteer’s ring-count accuracy metric for comparison with
SPNet would be 23%.

The task of SPNet is to match (average) human
performance from the SVP for the frames available, as
well as to “fill in” the missing annotations for frames
in-between those already annotated by volunteers. The
specificity of this goal will affect the design of the train-
ing, discussed in Section II D — the design goal of “filling
in” missing frames means that the trained SPNet model
is not intended to serve as a generic “deployable” infer-

ence model for general ESPI images that differ qualita-
tively from those in the SVP dataset. Questions regard-
ing the ability of the SPNet model to generalize to other
ESPI images such as those of guitars are addressed in
Section V.

B.Model architecture

The overall strategy of SPNet is inspired by
YOLOv227, but the model differs in that we use one
of several pre-defined ’stock’ multi-layered CNN archi-
tectures for the main convolutional network, such as
MobileNet35, InceptionResnetV236 or Xception.34 The
ability to easily swap in various predefined CNN base
models is made possible via the Keras neural network
framework.37 These models can be initialized using ran-
dom weights or weights pre-trained on Imagenet.38 Our
experience indicates that the Xception34 provides a good
base model yielding high accuracy, stable training, and
reasonable execution time. (MobileNet, although faster,
was not as accurate, whereas InceptionResNetV2 proved
both slower and more difficult to train consistently.)
These base models typically expect square-shaped im-
age inputs with 3 color channels, and large input images
can result in networks with so many tunable parameters
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FIG. 2. (color online) Graphical representation of one as-

pect of the variability in the aggregated human annotations

comprising the SVP dataset. While, physically, antinodes

typically persist over 50 to hundreds of frames, the fine struc-

ture of the raw data in this graph shows that the presence of

some antinodes may or may not have been annotated consis-

tently frame-by-frame (even in the aggregated data). This is

the dataset used to train and score the SPNet model. This

does not display (the further) variability in ring counts, only

whether an antinode is marked.
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+
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(Xception)

GridFC

Tile

~

FIG. 3. (color online) Diagram of the SPNet architecture. The grayscale input image is resized via average pooling and two

additional (“color”) channels are added via 3x3 convolutions before feeding into a “stock” base model chosen from available

Keras models (as described in the text, we prefer Xception34), which is then fully connected to a flattened layer which holds

the values of a 6x6x2 grid of predictors for the 8 variables in Table I. (6 × 6 × 2 × 8 = 576 values in the model output.) The

operations to the left of the base model can be regarded as a “residual block” designed to shrink the image to lower memory

costs while still retaining some finer details of the larger input image. Also shown as an array of red dots on the input image

are the centroids of regions covered by the predictors, which predict antinode centroid coordinates in terms of offsets from

these locations. Not shown: Leaky ReLU activations and batch normalization between layers. (Note: the images shown for

intermediate layers are “artwork,” not actual layer activations.)

(weights) that their memory requirements exceed the ca-
pacities of single computer workstations. In order to sup-
ply input images compatible with available pre-trained
base model architectures while keeping memory require-
ments manageable, we first resize our 512x384 grayscale
input images to a square size of 331x331. Even this
proves to be unnecessarily and prohibitively memory-
intensive, so we shrink this by a factor of two using “av-
erage pooling,” and then “tile” (i.e., repeat or broadcast)
the grayscale channel to form 3 identical “color” channels
– this is the lower path shown in Figure 3. Doing this
alone, however, could result in some loss in fine detail, so
we combine the lower path with the result of the “upper
path” consisting of multiple 3x3 convolutions yielding 3
filter channels, in concert with a pooling operation for
size reduction. Adding these two paths forms a “residual
block”19 for which the lower (pool-tile) path is a skip con-
nection. The skip connection allows the model to train
faster than without it by smoothing the hypersurface of
the loss function39, and the upper (conv-pool-conv-conv)
path allows the model to better resolve fine features from
the larger (331x331) image before reducing it in size to
feed into the base model. The pre-processing layers (be-
fore the base model) include Leaky ReLU activations and
batch normalization. We also add a small amount (0.1)
of dropout40 before the base model to help avoid overfit-
ting.

The output of the base model is fully connected to a
“flattened” layer whose elements are taken to represent a
“grid” of outputs we refer to as “predictors” which pre-
dict attributes of relevant antinodes for each subdomain
of the image covered by the predictor. Each predictor
predicts 8 values shown in Table I: (p, x, y, a, b, s, c, r),
where these values are defined relative to the subdomain
associated with each predictor, i.e., within each “grid
cell,” according to Table I. The “existence” variable p
∈ [0..1] measures the distinction between the background
and an object. The values of x, y, a and b are normalized
relative to the size of the image, and x and y are offsets
from the center of each respective grid point. Instead
of the ellipse rotation angle θ, we use the two variables
c ≡ cos(2θ) and s ≡ sin(2θ) which have the dual advan-
tages of avoiding any coordinate discontinuity at θ = 0
as well as ensuring uniqueness given the 180◦ rotational
symmetry of the ellipses.41 These variables are later used
in training by optimizing the loss function, which appears
in Section II D 1 as Equation (1).

C. Datasets

Table II summarizes the datasets uses in this study.
Early in this project, there were insufficient numbers of
(aggregated) volunteer-annotated images, so in order to
develop and test the model, we procedurally generated
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p : the probability of an antinode’s existence within the

grid cell, p ∈ [0..1]

x, y : coordinates of the offset of the antinode’s centroid

relative to the grid cell’s center on the image

a, b : the ellipse’s semimajor and semiminor axes (a >= b)

c, s : c ≡ cos(2θ) and s ≡ sin(2θ), where θ is the ellipse

orientation angle

r : the number of rings (i.e., interference fringes)

TABLE I. Definitions of predicted variables.

a large (50,000-image) corpus of random “fake” images
which combine these salient features: groups of ellipti-
cal rings of varying sizes, orientations, eccentricities, on
a background of wavy patterns, with noise. (We pre-
fer the word “fake” over the more formal “synthetic” to
avoid any confusion– these images are akin to “artwork”
and have no physical basis). Shown in the upper pane
of Figure 4 is an example of the fake data comprising
the FakeLarge dataset, along with superimposed “exact”
annotations (upper values, light-yellow) and SPNet pre-
dictions (lower values, dark-purple.) The fake images in
FakeLarge are quite different from the Real data in that
the former have sharp edges and lack the variations in
brightness, contrast, blurriness, and lost pixels observed
in the latter.

Additional datasets were created after it was ob-
served that the model’s performance when training on
the FakeLarge dataset (e.g., Figure 5) was much bet-
ter than when the Real dataset was used. Questions
about the cause of this discrepancy in performance be-
tween datasets included:

1. Was it because there was more data in FakeLarge
than Real?

2. Was it because antinode boundaries and rings were
much clearer in FakeLarge images than in Real?

3. Was it because the annotations in FakeLarge were
exact, whereas the annotations in Real were highly
variable, i.e., similar-looking images in Real of-
ten had very different annotations (thus “confus-
ing“ the ML system as it trained, and/or causing
it to get low scores on evaluations metrics like “Ac-
curacy”?

To explore the first question, we created the
FakeSmall dataset, and found that dataset size was not a
major factor. To answer question 2, we matched the vi-
sual properties of the real data (i.e., the statistics of the
pixels in the images) while still retaining “exact” anno-
tations against which to evaluate the model, by training
a CycleGAN42 model to do neural style transfer, apply-
ing the style of real images to those in FakeLarge. These
results were termed CGLarge, one example of which is
shown in the lower pane of Figure 4. We also created a
corresponding smaller set termed CGSmall. The implica-
tions of this being that the difference in performance be-
tween CGSmall and Real would provide a measure of the

Label Description

FakeLarge Fake, 50,000 images

Real RealReal data, ≈1200 images

FakeSmall 1200-image subset of FakeLarge

CGLarge CycleGAN-processed FakeLarge

CGSmall 1200-image subset of CGLarge

TABLE II. List of datasets, each divided into

Train/Validation/Test subsets as 80%/10%/10% splits.

Due to RAM limits, all Train subsets contain 40,000 images,

where smaller initial sets have training subsets (∼960 images)

augmented by a factor of 41 to produce 40,000 images. (see

“Data augmentatation”) “Fake” denotes synthetic images,

used as a consistent baseline given the inconsistency of the

human-annotated “real” images. Bold for the rows indicates

that these are the most similar for judging the effects of

variability in the human labels in Real (whereas those in

CGSmall are “exact”). Datasets FakeLarge and CGLarge are

available from Zenodo;33, whereas release of the Real Read

dataset is delayed pending a future paper.

degradation in model performance due to the inconsis-
tency in the volunteers’ aggregated annotations in Real.
As you will see below, the difference is significant.

1. Data preparation

We obtained a set of aggregated data from multiple
volunteers’ annotation attempts;13 although the users’
ring counts were entered as integers, the aggregation pro-
cess produces decimal ring counts. The main data prepa-
ration work for SPNet lay in taking the aggregated SVP
data and setting up the correct vector of target values
Y for all grid cells, for all images, in a way that would
be unambiguous and thereby ‘easiest’ for the system to
learn.

First, we initialize all predictors to indicate no exis-
tence, i.e., p = 0, and for all other variables to be set in
the middle of their respective (normalized) ranges. Then
for each set of annotations (for each image), also called
“metadata,” we sort the antinodes by their centroid loca-
tions, first vertically and then horizontally, then compute
which grid cell each antinode ‘belongs’ to. For the first
of the two predictors in that cell, we set e = 1, compute
x and y as the difference between the antinode’s centroid
coordinates and the center of the grid cell, divided by
the width of the grid cell to keep the values normalized
on −0.5..0.5. It is possible that the Zooniverse interface
allowed for a < b and/or for a given rotation angle θ that
may not be bounded within a 180◦ range, so for definite-
ness we swap a and b for any data in order to enforce
a > b, subtracting 90◦ in the process. After this we com-
pute c = cos 2θ and s = sin 2θ to enforce the twofold
rotational symmetry of the ellipses as well as avoid any
ambiguities with positive or negative angles, or coordi-
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FIG. 4. (color online) Sample fake images, showing ground-

truth bounding ellipses and ring counts (upper values, light-

yellow) and those predicted by the network (lower values,

dark-purple). Top: original style of fake image, from Fake-

Large dataset. Bottom: same fake image with “real” style

transferred via CycleGAN42, from CGLarge dataset.

nate singularities at θ = 0. This process is repeated, with
the second predictor in a cell being used if there has al-
ready been an antinode found in a given grid cell. (For
more intricate patterns of antinodes, more predictors per
cell and or a more finely-grained grid of predictors could
be used. The choice of 6×6×2 was found to be adequate
for the SVP data.) Having set up all the target or “true”
output data Y for the grid of predictors to be trained
against, it is possible to begin computing a loss function.
First, however, it is necessary to augment the input data
to improve the generalization performance of the model.

2. Data augmentation

Augmenting the Training set is a common regulariza-
tion technique used during the training of machine learn-
ing systems to increase the variance of a dataset and thus
make a trained model more robust, i.e., to improve its
generalization performance when operating on new im-
ages. It is crucial in relatively small datasets such as
the ' 1200 images obtained from the SVP. We perform
augmentations at two different stages.

The first stage consists of preprocessing augmenta-
tions that (randomly) change both the images and an-
notations together – rotations (±10◦), translations (±40
pixels), and reflections – as well as some image processing
such as noise or blurring.

The second set of augmentations are performed
“on the fly” at the start of each training epoch, on
all input images from the first stage, and consist of
random changes to the images only without altering
the annotations,43 such as blurring, adding noise and
“cutout”44 (i.e., excising multiple rectangular subdo-
mains), or changes to brightness or contrast. The on-the-
fly augmentations applied once per epoch for 100 epochs
to ≈40,000 training images from each dataset (after the
first set of augmentations) mean that during training the
model is trained on approximately 4 million different im-
ages for each dataset.

D. Training procedure

1. Loss function

Training is structured as a supervised regression
problem using mean squared error (MSE) loss for all
variables, subject to a few caveats as follows. For com-
pactness, we use the symbol ∆2

u to denote the squared
error for a variable u ∈ {p, x, y, a, b, c, s, r}, so e.g.,
∆2

x ≡ (x̂− x)2, with predicted values denoted by “hats.”
In this notation, we define the loss function Lj for each
grid-based predictor j, weighted by the the ground truth
existence p (= 0 or 1) of an antinode in each region, with
constant scaling factors λu (tuned by experience so that
the terms in the sum are all comparable in magnitude)
to be given by:

(1)
Lj =−λp∆2

p + p
[
λcenter(∆

2
x + ∆2

y) +λsize(∆
2
a + ∆2

b)

+ λangle(a− b)2(∆2
c + ∆2

s) + λr∆2
r

]
The total loss L = (1/N)

∑N
j=1 Lj is then the mean over

all predictors j, with N = 6 × 6 × 2 = 72 being the to-
tal number of predictors in the output grid. The term
in brackets in Eq. (1) is scaled by the ground truth ob-
ject existence probability p (= 0 or 1), because without
existence all other quantities have no ground truth val-
ues. The use of the squared difference (a − b)2 to scale
the contribution due to the angle reflects the intention
that, the more circular an ellipse is, the less its angular
orientation should matter.

(Replacing the first term in the loss (1) with a cross-
entropy term, i.e.,
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−λp [p log(p̂) + (1− p) log(1− p̂)] , was found to confer
no appreciable improvement to the results.)

We also add an L2 regularization or “weight
decay”45,46 with strength 1E-4 to all layers in the Keras
model;47 we find this regularization to be important for
avoiding overfitting.

2.Model Initialization

Although it is possible to initialize the base model
supplied by Keras using weights pre-trained on Im-
ageNet, the different nature of our images (grainy
grayscale ESPI rather than color images of common ob-
jects, animals, vehicles, etc.) and our intended output
type (regression rather classification) made these pre-
trained weights of little utility, and no better than ran-
dom initialization. Thus we train all model layers from
random initial weights.

III. MODEL PERFORMANCE AND EVALUATION

The purpose of the SPNet model is to help with SVP
annotations with the goal of obtaining physical insight
into the motion of drums, not to lay claim to “state-
of-the-art” status in object detection nor win a Kaggle
competition, nor to provide a general utility for generic
interference measurements, nor to offer real-time com-
putational efficiency. Nevertheless, it is important for a
method such as ours to yield reliable results in a timely
manner, and for this reason we provide measurements of
training progress and accuracy scores. Sample graphs for
training progress in terms of loss (component) values and
accuracies are shown in Figure 5. We typically trained
for 100 epochs using an Adam optimizer and “1-cycle”
learning rate schedule48,49 with cosine annealing,50 using
a maximum learning rate of 4e − 5. These runs would
take 8 hours on a machine fitted with an RTX 2080Ti
GPU.

Object detection models are usually evaluated in
terms of classification and localization. Given that our
task is one of regression rather than classification, many
object detection metrics do not apply directly. However,
we emulate the task of an individual human in the SVP
(who provided integer values for ring counts up to 11—in
which each integer could be regarded as a class), by con-
sidering whether the model’s prediction is within ±0.5 of
the ground truth value.51 Using this, we produce a “ring
count accuracy” metric, as follows: We take the num-
ber of matching ring counts between ground truth and
predictions and divide it by the total number of ground
truth objects (antinodes) in the Validation dataset. For
example, 168 matching ring counts out of 482 ground
truth objects would yield an accuracy score of 35%. For
comparison, we noted in Section II A that the standard
deviation of individual human volunteers contributing to
the aggregated ground truth data imply that a typical
volunteer subjected to a similar metric would score a ring
count accuracy of 23%.

For an additional metric that applies only to antin-
ode object detection and not ring counts, we compare
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FIG. 5. (color online) Training progress. Top: various com-

ponents of the loss function for dataset FakeLarge. (A similar

graph for Real would show Validation loss values leveling off

after approximately 20 epochs, which is where the Training

loss crosses the Validation loss.) Bottom: Classification-like

accuracy scores for ring counts for validation subsets of all

datasets. Despite FakeSmall, CGSmall, and Real all having

similar numbers of training images (ca. 1200, when are then

augmented as per Section II C 2), FakeLarge and CGSmall

have much higher accuracy scores than Real. The fact that

the accuracy for Real does not improve beyond Epoch 20 indi-

cates the variability of the human-supplied data annotations.

the aggregated responses by human users in the SVP to
the model predictions, according to the following metrics:
precision (i.e., number of true object detections divided
by the total number of objects predicted by the model),
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recall (i.e., true object detections divided by the total
number of objects in the aggregated human data), and
intersection-over-union score (IoU, (i.e., the fraction of
area overlap between predicted ellipses and their ground
truth counterparts). These can be combined into a single
metric known as the mean average precision (mAP),52

which has been averaged over a set of multiple detec-
tion thresholds (i.e., this mAP is comparable to the
“COCO mAP”53 with the single category of foreground-
vs-background detection). These scores are listed in Ta-
ble III. As a baseline comparison, the Real dataset was
converted to rectangular bounding boxes and processed
using the object-detection package IceVision54, yielding
similar mAP scores of 0.62 and 0.63 using IceVision’s
Resnet50 and YoloV5 models, respectively.55

Dataset Accuracy mAP

FakeLarge 0.95 0.97

Real Real0.35 Real0.67

FakeSmall 0.94 0.95

CGLarge 0.89 0.89

CGSmall 0.77 0.78

TABLE III. Scores for accuracy and mean average precision

(mAP) for models trained for 100 epochs from the same ran-

dom initial weights. “Accuracy” is defined as number of

matching ring counts (within ±0.5) divided by total ground

truth objects, whereas mAP indicates antinode detection

rate52 over a range of detection thresholds and is indepen-

dent of ring count.

We attribute the low accuracy on the Real dataset to
the inconsistency of human annotations, rather than the
size of the training corpus, because scores for CGSmall
(which has a similar number of images with similar fea-
tures but consistent annotations) are significantly higher.
The difference between results for the two datasets be-
comes even more striking when one considers that the
Real data has less variability in images compared to CGS-
mall, because for the former the antinodes in a given
video clip stay in only a finite number of places, and the
nature of “filling in” missing annotations between frames
implies that images randomly allocated among the Train-
ing and Validation sets will contain many near-duplicates
– in other words, for the Real data, one might expect ar-
tificially high scores due to “cheating.” In contrast, in
CGSmall the antinodes are distributed randomly every-
where, thus making it more difficult for the model to
memorize their existence, locations, and sizes. Further-
more, increasing the Training set when scoring against
the Validation set for the Real dataset, for example by
combining the Training portions of CGLarge and Real,
confers no noticeable change in the evaluation scores, be-
cause again, the evaluation data for Real is highly vari-
able. Even after “data cleaning” by the authors’ manu-

ally editing the annotations for all 1200 images in Real,
there was no uniform consistency, as the annotation in-
volves many “judgment calls” of whether an antinode is
present, and if so, how many rings should be counted. Fu-
ture annotation efforts may benefit from using more than
one frame at a time, such as viewing the stack of frames
as a 3D volume and annotating via the kinds of software
used in medical imaging and segmentation. Greater re-
finement of the model architecture and hyperparameter
tuning would likely produce increases in the already-high
evaluation scores on the synthetic datasets (FakeLarge
through CGSmall), however, the limiting factor of the
variability in the Real dataset’s annotations implies that
continued revision of the model would have little effect
on the metrics for the Real data, from which we wish to
extract measurements of physical phenomena. We an-
ticipate that through additional cleaning of the dataset
(i.e., improving the consistency of the annotations), that
the accuracy score will rise accordingly.

Given the difficulty in scoring the model’s accuracy
on real data, a concern arises about whether attempts
to extract physics from the model’s annotations are suf-
ficiently warranted. While this concern merits further
study, two additional consistency checks give us reasons
for optimism. Firstly, curve fits of the model’s time-series
predictions of ring counts for octave notes yield close
agreement with the known frequencies of those notes,
such as a fit of 660 Hz obtained for the ring counts of
the octave note when E4 (= 330 Hz) is struck, and a fit
of 596 Hz for the octave note when D4 (= 294 Hz) is struck
as shown in Fig.6. The curve fit used was an absolute-
value of cosine, which is chosen as the ring count cannot
be a negative value. The curve fit successfully matched
the frequencies of the octave note for 5 of the 7 recorded
strikes for which the SPNet model was used to generate
predictions of ring counts. The 2 cases where the model
was unable to make predictions leading to a reliable curve
fit are due to the amplitude of the drum strike being not
sufficiently large enough to generate motion in the oc-
tave note that could be detected by the ESPI system. A
graph showing a detail of one such sinusoidal fit is shown
in Figure 6.

Secondly, our inspection of the predictions of the
model when applied to un-annotated video frames
(such as in the sample movie at https://youtu.be/
-rJLwcbQ7Kk) confirms that SPNet’s predictions of both
antinode boundaries and ring counts are consistent with
our own estimations. Given these reasons for cautious
optimism, in the following section, we begin to explore
what physics may be ascertained when one is willing to
take the many thousands of new frame-annotations pro-
vided by the model at face value, with the caveat that
these are preliminary results.

IV. PRELIMINARY PHYSICS RESULTS

Figure 7 shows drum oscillation amplitude as a func-
tion of time, comparing ring counts obtained from SP-
Net with audio recordings using a microphone placed 1m
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FIG. 6. (color online) A segment of the SPNet amplitude pre-

dictions (circles) for the region of the steelpan corresponding

to the D5 note is fit with an |cosωt| function. The fitting pa-

rameter B is equivalent to ω. In this case f = ω
2π

= 596 Hz,

which is close to the frequency of the D5 note. (Note that

this is a constant-amplitude fit in order to find the frequency.)

Human annotations (SVP, x’s) are included for comparison.

from the center of the drum. Each recording of a drum
strike was made using an ACO Pacific Model 7012, 1

2”
condenser microphone controlled by a custom LabView
program triggered to coincide with the high-speed ESPI
recording. Audio recordings were made at a sample rate
of 44100 Hz, and analysis of the recordings was done with
the SNDAN package.56 The large fundamental note such
as that shown in the left of the field of view (as shown in
Fig. 1) is struck, and the SPNet analysis tracks the rings
in a note to the right, corresponding to the second har-
monic. (This was confirmed by measuring the frequency
of the oscillations in the ring counts.)

Figure 8 explores the relationship between the num-
ber of rings and the size (area) of the antinodes. For
large ring counts, which indicate large deformation (or
velocity) of the surface, one would expect the area of the
antinode to be the same as that of the note itself. Small
areas and small ring counts could result from small notes,
or could result from large note areas in which the note
is barely moving. In the latter case, one would only see
the shape of the largest portion of the note that “peeks
up” above the threshold set by the laser interference. It
is not obvious, then, what the relationship between area
and ring count should be, and thus we provide Figure 8
as a set of raw observations. The differing coloration
of the dots is primarily to allow for articulate viewing
(i.e., so the reader is not presented with a large wash of
undifferentiated uniform color) and also to provide the
opportunity to observe any time dependence in the dis-
tribution of the values. We do not claim to detect a
noticeable time-dependent trend in the case of this fig-

ure, however in the following figure there does appear to
be some noticeable time-dependence.

In Figure 9 we investigate the relationship between
(squared) eccentricity and ring count. As with area vs.
ring count, it is not obvious what the relationship be-
tween eccentricity and ring count should be: If eccentric-
ity were determined purely by the shape of each note,
then we would expect a “quantized” set of eccentrici-
ties (one for each note-shape), but instead we see a wide
range of antinode eccentricities present. (The horizon-
tal banding near the bottom is a non-physical artifact
of pixel-integer math.) In the case of this figure, we ob-
serve that the darker dots representing early times tend
to cluster in the upper right area of high eccentricity and
low ring count, whereas the domain of low eccentricity
and high ring count tends to be occupied only at later
times. We will discuss this further in Section V.

A sample movie of SPNet-annotated video frames is
available in Supplemental Materials, as well as at https:
//youtu.be/-rJLwcbQ7Kk.

V. DISCUSSION

A. Physical Interpretation

In Figure 7 we observe the differing behavior of the
second harmonics when measured via audio versus SP-
Net (via the latter’s ring-count annotations of the octave
note). We find this difference surprising, as we would
expect these two signals to exhibit close similarity.

In 7a, the audio signals for the first and second har-
monics initially decay at approximately the same rate
(i.e., they have the same “reverberation time”), suggest-
ing that this initial transient in the second harmonic
sound results from the first harmonic note ringing down
as a superposition of first and second harmonics, and only
later does the octave note in the drum begin to oscillate
significantly – on differing time scales of roughly 50 ms af-
ter the strike for in the video (SPNet output), and 150 ms
for the audio. The strike shown in Figure 7b exhibits
qualitatively different behavior from the previous graph.
The second harmonic in the audio initially decays much
faster than the fundamental, and rises again 90 ms later,
whereas the octave note as measured by SPNet begins
oscillating immediately and maintains its amplitude.

The drum strikes were performed by hand, not al-
ways with the same velocity or even exactly in the same
location within each fundamental note, so that differ-
ences between Figure 7(a) and (b) need not merit conster-
nation in their own right. One may add to this the fact
that these two different drum notes were hand-hammered
by the steelpan tuner and thus there is no guarantee of
consistency from one note to the next.

Allowing for such variations, however, the difference
(for each strike) in the second harmonic between audio
and video (SPNet annotation) measurements is never-
theless noteworthy. At present, we are unable to account
for this discrepancy. Looking at the graphs of the signals
(physics aside), one might propose some kind of “delay”
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FIG. 7. (color online) Time series for 4 (manual) drum strikes on fundamental notes D4, D4 again, E4 and A4. The solid

(blue) line shows the rapid oscillation in ring counts from SPNet’s annotations of the corresponding octave note, for which

absolute-value cosine curve fits show frequencies at or very close to the expected 2nd harmonic frequencies (i.e., D5, E5 and A5,

respectively). Dot-dashed (black) and dashed (red) lines show the amplitude obtained from audio recordings of the events, for

the 1st and 2nd harmonics, respectively. The richness of the drum’s behavior is evident from the variability between strikes.

All graphs show a rapid damping of the 2nd harmonic immediately after the initial strike, yet the later rise in the 2nd harmonic

sound intensity significantly lags (or is even uncorrelated with) the motion of the corresponding octave note observed in video

analysis by SPNet. Even in the left-most graph where the two appear to correspond, the lag is significantly longer than would

be suggested by physical delay mechanisms such as wave travel time. We discuss these further in Section V. (The SPNet

annotations end before the audio recordings because high-speed video was only recorded for ≈ 150 ms.)

of at least 50 ms between the two signals, at which point
it is worth ruling out two mechanisms that would not
produce such a long-term effect. Firstly, the travel time
of sound in air from the drum to the microphone is no
more than 3 ms since the latter is only 1 m away. Sec-
ondly, the wave speed in the drum is roughly 3000 m/s
(this is not a precise number because steelpans like the
one used in this study are hand-hammered by artisans
and thus contain variations in thickness), whereas the
distance between the fundamental and octave notes is
at most a few centimeters, yielding a wave travel time
in the drum on the order of 10µs. Given that the dy-
namical timescales for wave travel are so short, it seems
unlikely that the difference in signals can be accounted
for in terms of a delay due to wave propagation. Thus
an understanding of the physics producing the observed
difference in the measurements for the second harmonic
awaits further study.

Turning our attention to the distribution of eccen-
tricity versus ring count as shown in Figure 9, we ob-
serve an apparent trend of clustering of early-time antin-
odes towards the upper left, with the lower right consist-
ing of mostly later-time antinodes. This raises several
questions, as the interpretation of this observation is not
straightforward. While this trend is truly present in the
data (and not some artifact of the order in which points
are plotted), we prefer caution about drawing physical
inferences from this. The idea that large, circular antin-
odes are the ones likely to persist the longest seems well-
motivated, but the evolution of a single antinode is not

trackable in this figure: We saw in the second harmonic
graphs of Figure 7, ring-counts not only decrease with
time via damping but can increase over time. (Also,
since the frames show oscillating antinodes, each dot in
the graph oscillates left-and-right “rapidly” in this fig-
ure, regardless of any longer-term trends). Apart from
the “path” through this graph-space that an individ-
ual antinode might take over time, it is unclear whether
“missing” data points have any physical significance. For
example, in this data there is an absence at early times
of low-eccentricity antinodes with high ring counts, and
yet we know that the note at which the drum is struck
oscillates with an essentially circular shape, with high
ring count. Is it then the case that the “missing” cir-
cular, high-ring-count antinodes do not occur, or is it
merely that these are not detected (i.e., false negatives)
by the model? The latter scenario seems likely, given
that many volunteers in the SVP failed to annotate the
large initial strike area. One might similarly conjecture
whether the “hole” seen around the coordinates (9, 0.4)
is physically interesting, or is a mere artifact of the avail-
able notes on the drum (i.e., the finite number of notes,
and/or the choice of the experimenters on which notes
they recorded), or an artifact of the object detector.
These questions bear further investigation.

B.Machine Learning Considerations

Rather than producing a generic object detector
package for measuring interference fringes in all forms
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FIG. 8. (color online) Area vs. number of rings for antin-

odes detected in four separate videos of drum strikes. The

largest ring-counts are associated with large areas, however

as expected, the reverse is not the case, for physical reasons

described in the text. We color the points by the frame num-

ber in each video, as a way to investigate how the distribution

of area vs. ring count might change over time (although we

make no claims for this figure).

of musical instruments illuminated by ESPI, we have
trained a model to assist in filling in missing annotations
(“in-between frames”) for a small set of videos focused on
a particular region of a particular steelpan drum. While
the methods used in this paper could be replicated in
other domains if sufficient training data (i.e., annotated
video frames) were available, the question of how well our
model, trained on such images as we have, could predict
interference fringes in more general situations, remains
open. One would hope that transfer learning57 could be
applied using our model as a starting point for similar
ESPI images, lowering the requirement for new train-
ing data. Earlier we stated that using transfer learning
using ImageNet weights proved no better than starting
from scratch, but the similarity between ESPI images
(vs. their difference from typical ImageNet images) could
prove beneficial.

Not all instruments exhibit elliptical-shaped antin-
ode regions, however, we conjecture that the shape is
not a primary limiting factor if one wishes to count
fringes apart from requiring precise bounds on the antin-
ode regions. Some early work we performed using image-
segmentation model Mask-RCNN58,59 indicated it could
find peanut-shaped and triangle-shaped antinode regions
even when trained on ellipses, however the code struc-
tured on a deep level as a classifier and we elected not to
try to modify it for regression.

The variability in the human annotations of the
real data prevented us from objectively scoring highly
when evaluating the model (because even the test-
ing set exhibited the same inconsistencies), and al-
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FIG. 9. (color online) Eccentricity squared vs. ring count. We

observe that dark-colored dots representing antinodes at early

times tend to cluster towards the upper left area of higher

eccentricity and low ring count, whereas lower eccentricities

with larger ring counts are seen mostly at later times (lighter

colors). For nearly circular antinodes, the model is not pre-

vented from predicting b > a sometimes (by as much as 7

pixels), despite being trained on data for which a > b is al-

ways satisfied; hence the negative values of 1− b2/a2.

though using the fake data (particularly CGSmall) al-
lowed us to gauge how well the model might perform on
consistently-annotated ESPI images, this fake data was
not physically-motivated. An alternate path to obtain-
ing physically-realistic training data would be to perform
physical simulations of the steelpan60 via methods such
as Finite Element modeling61,62 and then apply “styling”
techniques such as CycleGAN to make the fake images
look like the real ones.

VI. CONCLUSIONS

Using an object detector comprised of convolutional
neural networks, it is possible to locate and track antin-
ode regions on oscillating steelpan drums, and to solve
the regression task of estimating the number of inter-
ference rings in each antinode. While variations in the
human annotations prevented high scores on accuracy
metrics, our “SPNet” model’s performance was sufficient
to extract oscillation information at the correct frequen-
cies in highly time-dependent, transient regimes. Data
from our analysis indicate a significant discrepancy be-
tween audio recordings of second harmonic oscillations
(sympathetic to a drum struck on a fundamental note)
and optical measurements (i.e., video frame analysis by
SPNet). Explaining this discrepancy in terms of likely
physical processes remains beyond the scope of our cur-
rent effort. Subsequent analysis published in future pa-
pers may reveal additional insights.
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