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Chapter 1

Introdu
tion

1.1 Notation and Conventions

Throughout this dissertation we will use the traditional \numeri
al relativity" nota-

tion whi
h is also employed in Misner, Thorne and Wheeler [73℄. Namely, we employ

a metri
 with signature �+++, we will use Greek indi
es to run from 0 to 3 (i.e.

over time and spa
e) and Latin indi
es to run from 1 to 3 (for spatial quantities),

with the summation 
onvention applied over ea
h set of indi
es. We will use the

symbol r

�

to denote the 
ovariant derivative 
ompatible with the four-dimensional

metri
 g

��

, and the symbol D

i

as the 
ovariant derivative 
ompatible with the three

dimensional \spatial" metri
 h

ij

. (Indi
es of \spatial" ve
tors su
h the ele
tri
 and

magneti
 �elds E

i

and B

i

are raised and lowered using h

ij

.) As an additional short-

hand notation throughout this dissertation, we will often employ the non-tensorial

operator �

�

� g

��

�

�

. (We will only use this operator on s
alar �elds.) We will

work in geometrized units, su
h that Newton's 
onstant G = 1 and the speed of

light 
 = 1. For the massive s
alar �elds 
overed in this dissertation, the \boson

mass" m has units of inverse length, for whi
h the 
orresponding physi
al mass is

m�h=
. Thus we 
hoose �h = 1, but we emphasize that all the dis
ussions and results

1



to follow are given within the 
ontext of 
lassi
al �eld theory.

1.2 Layout

This thesis is 
on
erned with the numeri
al simulation of systems whi
h feature

s
alar �elds in strong gravitational �elds. These systems bear many similarities to

well-known astrophysi
al 
uid systems. A s
alar �eld provides a useful matter sour
e

whi
h shares many features of a 
uid, yet the s
alar �eld is des
ribed by simpler

equations of motion, and thus 
an provide a simple \toy model" of an astrophysi
al

matter sour
e with whi
h to study dynami
s in general relativity. This thesis is

divided into the following prin
ipal parts: boson stars, multi-s
alar stars, s
alar

a

retion and adaptive mesh re�nement.

Boson stars are 
ompa
t bodies 
omposed of a 
omplex massive s
alar �eld,

minimally 
oupled to the gravitational �eld of general relativity. These obje
ts are

lo
al equilibrium solutions of the Einstein and Klein-Gordon equations, in whi
h the

spa
etime is stati
, although the real and imaginary 
omponents of the s
alar �eld

os
illate. Boson stars have similarities to neutron stars, su
h as their possession

of a maximum mass whi
h marks the transition from stability to instability. We

present dynami
al simulations of boson stars whi
h are driven to the threshold of

bla
k formation via an ex
hange of energy with an additional real, massless s
alar

�eld. We show that the 
riti
al solutions appear to be unstable boson stars.

Multi-S
alar Stars are a family of stable, quasi-periodi
 
ompa
t solutions

to the Einstein-Klein-Gordon system whi
h were dis
overed in the 
ourse of the

boson star simulations. This 
lass of solutions 
ontains boson stars and os
illating

soliton stars (whi
h are periodi
 solutions involving a single real �eld) as subsets.

The remarkable feature of these multi-s
alar solutions is that they indi
ate that

stable, quasi-periodi
 solutions are perhaps more generi
 than has been previously

assumed. We dis
uss the 
onstru
tion of multi-s
alar stars and relate results of some

2



simulations of these obje
ts.

Adaptive Mesh Re�nement (AMR) is the name given to a 
lass of te
hniques

that 
an be used when modeling physi
al systems using approximate �nite-di�eren
e

solutions of partial di�erential equations. For simulations in whi
h a �xed lo
al a
-


ura
y is desired, the required resolution may vary widely both in spa
e and in

time, in a manner whi
h is unknown a priori. AMR is a way of providing the

appropriate amount of resolution throughout the spa
e-time domain, and allows

one to generate solutions within a desired error toleran
e at a fra
tion of the 
ost

of a 
orresponding uniform-grid (unigrid) appli
ation. However, even given a 
er-

tain amount of 
omputing eÆ
ien
y one obtains from AMR, 
urrent �nite-di�eren
e


odes must be parallelizable if they are to take full advantage of the largest 
om-

puters 
ommonly available to resear
hers. AMR and parallelization ea
h present

signi�
ant 
hallenges whi
h for many resear
hers may be prohibitive and lead us

to investigate the development of environments where AMR and parallelization are

provided \automati
ally". This thesis in
ludes work towards the 
reation of one

su
h environment.

S
alar a

retion is a term we will use to denote the dynami
s of a s
alar �eld

whi
h is being swallowed by a bla
k hole. The intended system referen
ed here is a

s
alar \a

retion disk" in whi
h the s
alar �eld is 
harged and 
oupled to an ele
tro-

magneti
 �eld, and evolving in the vi
inity of a rotating bla
k hole. This resear
h

was intended to serve as useful test 
ase for the adaptive mesh re�nement te
h-

niques des
ribed above. This work is just beginning, and we dis
uss the ne
essary

ba
kground for the material and give a 
urrent status report.

1.3 Conne
tion with Other Resear
h

S
alar �elds have not been measured by any experiment to date, yet 
urrent the-

ories of parti
le physi
s and 
osmology 
all for the existen
e of one or more s
alar

3



(or pseudo-s
alar) �elds. Furthermore, measurements of galaxy rotation 
urves and

the properties of galaxy 
lusters indi
ate that there is a substantial amount of non-

baryoni
 matter, \dark matter", in the universe. The s
alar �elds studied in this

thesis provide one 
andidate for the weakly-intera
ting \missing mass" of our uni-

verse. It is reasonable to suggest that, if these �elds exist, they might rea
h suf-

�
ient densities in 
ertain pla
es as to 
ondense into the 
ompa
t obje
ts we 
all

boson stars, or be drawn into bla
k holes (formed by s
alar or fermioni
 matter)

and display some of the dynami
s des
ribed in this work.

The boson star resear
h is interesting prin
ipally for what it tells us about

strong-�eld gravity. Dynami
 solutions of Einstein's equations in their full nonlin-

earity are fairly re
ent additions to the �eld of relativity, and the solution spa
e of

the theory is still largely unexplored. The work presented in this thesis is a further


ontribution to the study of 
riti
al phenomena in gravitational 
ollapse, whi
h be-

gan not quite a de
ade ago. This resear
h may also suggest a dire
tion for neutron

star resear
h in the near future, given the suggestion that, be
ause boson stars 
an

explode, neutron stars 
an probably do the same. This may prove to be a foundation

for providing yet another s
enario (among many) des
ribing the mysterious gamma

ray bursts measured by spa
eborne gamma ray observatories.

The s
alar a

retion study, like the boson star work, also serves as both a \toy

model" for more 
onventional (fermioni
) astrophysi
s, and an interesting study in

its own right about a system whi
h has re
eived very little attention. It is in part a

stepping-stone to the goal of full 3D magnetohydrodynami
 (MHD) simulations in

evolving spa
etimes. We may be able 
apture some features thought to be important

in astrophysi
al 
uid systems, su
h as pro
esses for extra
ting energy from the bla
k

hole, and the produ
tion of high-speed jets.

The AMR work has relevan
e for 
omputational physi
s as a whole, be
ause

many resear
hers are now interested in performing 3+1-dimensional simulations of

4



various phenomena, and su
h simulations will require eÆ
ient use of 
omputational

resour
es to provide suÆ
ient resolution of interesting features in the system. Two

appli
ations of interest to this author are the binary bla
k hole problem and the

global simulation of MHD a

retion disks.

1.4 Our Matter Model

1.4.1 S
alar Fields Themselves

What is a s
alar �eld, \physi
ally"? All the systems 
onsidered in this thesis are


on
eived within the 
ontext of 
lassi
al �eld theory. In this view, the s
alar �eld rep-

resents another fundamental �eld, like the ele
tromagneti
 and gravitational �elds

As mentioned previously, su
h additional fundamental �elds are a feature of some

popular theories of parti
les physi
s and 
osmology, so �elds su
h as those studied

in this thesis may indeed exist in our universe. We will use the term \boson" at

times (e.g. \boson star"), sin
e s
alar �elds would be 
omposed of spin-0 (bosoni
)

parti
les. The s
alar �eld is regarded as a smoothly-varying �eld, a fun
tion de�ned

on all points in spa
e and time, for whi
h the values of this fun
tion and its spa-

tial and temporal derivatives 
ontribute to a lo
al energy density everywhere in the

spa
etime. This fun
tion evolves a

ording to the well-known Klein-Gordon equa-

tion, with some possible 
oupling to other fundamental �elds in the model, and may

in
lude a \mass" term whi
h gives a dispersive quality to \wave pa
kets" 
omprised

of the s
alar �eld. This dispersion is important as it provides an e�e
tive repul-

sive pressure, whi
h 
an support a 
ondensed mass of the �eld against gravitational


ollapse and allow it to form a boson star. Even if s
alar �elds do not a
tually

exist in our universe, their study is nevertheless signi�
ant. S
alar �elds have often

been employed in relativity resear
h be
ause they represent a very simple matter

sour
e, having only one (
oordinate-invariant) 
omponent and possessing nontrivial

5



dynami
s in spheri
al symmetry.

In this thesis, we will 
onsider 
omplex and real s
alar �elds. For the boson

star study of Chapter 3, we will use a model in whi
h one 
omplex massive �eld

and one real massless �eld are 
oupled to the gravitational �eld of general relativity

in spheri
al symmetry. Chapter 4 dis
usses the dynami
s of two real massive �elds


oupled to gravitational �eld of general relativity. In Chapter 6, we will we will


onsider a massive 
omplex �eld 
oupled dynami
ally to an evolving ele
tromagneti


�eld in the presen
e of the stati
 spa
etime of a rotating bla
k hole.

1.4.2 S
alar Fields vs. Hydrodynami
s

S
alar �elds share some properties with perfe
t 
uids, whi
h are often used in more

`realisti
' models of astrophysi
al systems. A perfe
t 
uid is 
hara
terized by three

quantities: a 
uid 4-velo
ity ve
tor �eld, an energy density s
alar �eld, and an

isotropi
 pressure s
alar �eld [37℄. The stress energy tensor for a perfe
t 
uid is

given by

T

��

= (�+ p)u

�

u

�

+ pg

��

(1.1)

where � and p are the energy density and pressure, respe
tively, in the rest frame

of the 
uid, u

�

is the 
uid 4-velo
ity, and g

��

is the metri
 tensor.

An important di�eren
e between s
alar �elds and 
uids is that 
hara
teris-

ti
s of the s
alar �eld wave equation do not 
ross, and thus these systems do not

develop dis
ontinuities in generi
 evolutions of smooth initial data. The tenden
y

of 
uids to form sho
k waves presents a signi�
ant 
hallenge to 
omputational 
uid

dynami
ists, requiring a host of sophisti
ated numeri
al te
hniques to handle these

features properly in a 
omputer 
ode. Fluid systems also require spe
ial treatment

for very low densities be
ause the 
uid equations are not well de�ned in the va
uum

limit. For this dissertation, we will not need to handle sho
k waves, and 
an employ

the more 
onventional methods developed for smoothly-evolving fun
tions.
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The similarities between s
alar �elds and perfe
t 
uids 
an be made more

rigorous by following a dis
ussion due to Madsen [68℄. A real s
alar �eld 
an be

des
ribed by the Lagrangian density

L = �

1

2

(�

�

��

�

�) + V (�) (1.2)

where V (�) is some potential term. The stress energy tensor is written as

T

��

= �

�

��

�

�+ Lg

��

(1.3)

By 
omparing (1.1) and (1.3), we see that the 
uid quantities are related to the

s
alar �eld quantities by

p = L (1.4)

(�+ p)u

�

u

�

= �

�

��

�

� (1.5)

For the e�e
tive 4-velo
ity of the s
alar �eld, we 
an de�ne a ve
tor �eld of unit

magnitude via

u

�

=

�

�

�

p

��

�

��

�

�

; (1.6)

whi
h only provides a meaningful notion of velo
ity when �

�

� is timelike. Contra
t-

ing (1.5), we �nd

�(�+ p) = �

�

��

�

�

or, using (1.2) and (1.4),

� = p+ 2V (�) : (1.7)

For the 
omplex �elds used in this thesis, the dis
ussion pro
eeds in the same

manner as above, where V (�) be
omes V (j�j), and in whi
h we de�ne the 4-velo
ity

as

u

�

=

�

�

j�j

q

��

�

j�j�

�

j�j

: (1.8)

An alternative de�nition would involve a 
omplex 4-velo
ity,

~u

�

=

�

�

�

p

��

�

��

�

�

�

; (1.9)
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for whi
h ~u

a

~u

�

a

= �1, and in whi
h the real and imaginary parts of ~u provide notions

of the 4-velo
ities of the real and imaginary parts of the �eld, respe
tively. With a


omplex 4-velo
ity the stress-energy tensor takes the form

T

��

= (�+ p)~u

�

~u

��

+ pg

��

: (1.10)

It is perhaps worth noting that in re
ent work by S
hun
k and 
ollaborators

[87, 35, 72℄, as well as the original work of Kaup [62℄, stated that the e�e
tive

pressure is anisotropi
 in a boson star, whereas our pre
eeding dis
ussion indi
ates

that the e�e
tive pressure for s
alar �elds is indeed a s
alar quantity (namely, the

Lagrangian density). S
hun
k and 
ollaborators seem to 
laim the existen
e of this

pressure anisotropy on the basis that the stress energy tensor in mixed form, T

�

�

, is

not expressible in the form diag(��; p; p; p) but rather as

T

�

�

= diag(��; p

r

; p

?

; p

?

) ; (1.11)

where p

r

and p

?

are generally di�erent. It seems likely that these authors do not

pursue the idea of de�ning a velo
ity �eld in the manner des
ribed in pre
eeding

paragraphs, sin
e (as we shall see) the boson star is a standing wave and is not mov-

ing in the usual S
hwarzs
hild-like 
oordinates, and thus the anisotropi
 stress (for


omparison to stati
 
uid stars) may be regarded as an anisotropi
 pressure. Sin
e

a s
alar �eld is not a 
uid, the notion of the �eld \velo
ity" (and hen
e \pressure"),

while not entirely arbitrary, may be best 
hosen a

ording to the features of the

problem in whi
h one is interested.

The pre
eeding dis
ussion is intended to help establish the link between s
alar

�elds and 
uids. In addition to the merits of studying s
alar �eld systems in their

own right, and in addition to the value of su
h studies as testbeds for developing

numeri
al te
hniques, the similarities between some properties of s
alar �elds and

perfe
t 
uids provide us with the possibility of deeper understanding of some 
uid

systems.
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Chapter 2

Theoreti
al Ba
kground

2.1 Topi
s in Relativity

2.1.1 3+1 De
omposition

Often it is useful to view the \timeless" four-dimensional spa
etime manifold as a

series of snapshots of three-dimensional spa
e whi
h evolve with time. More te
hni-


ally, we say that we 
an de
ompose the spa
etime into a one-parameter foliation of

spa
elike hypersurfa
es, with the family parameter t serving as a time 
oordinate.

We often refer to these spa
elike surfa
es as \sli
es" through the spa
etime, and the


hoi
e of time 
oordinate as a 
hoi
e of \sli
ing." In this view we then have three

spatial dimensions plus one time dimension, and hen
e we atta
h the name \3+1"

to this view of spa
etime. The mathemati
al formalism asso
iated with this view

was presented in de�nitive form by Arnowitt, Deser and Misner [8℄, and hen
e we

use the term \ADM formalism" to refer to their system.

In the ADM formalism, all dynami
al tensor obje
ts exist as 3-dimensional

\spatial" tensors on ea
h spa
elike hypersurfa
e, and are provided with \time deriva-

tive" quantities whi
h 
onne
t spatial tensors on one hypersurfa
e to those on the

next hypersurfa
e. The 
oordinate freedom is expressed in terms of the lapse � and
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Σ

Σ
β

τ = α dt

x+∆x

t+∆t

t

x

Figure 2.1: A s
hemati
 of the 3+1 de
omposition. Here we show a 1+1 dimen-

sional subset of the full spa
etime, in whi
h the time 
oordinate t advan
es roughly

verti
ally, and the spatial 
oordinate x advan
es in an essentially horizontal dire
-

tion. The surfa
es �

t

and �

t+�t

de�ne nearby surfa
es of 
onstant t. The amount

of \skew" in the 
oordinates is given by �

i

, whi
h is 
alled the shift ve
tor. The

amount of proper time � along an interval normal to the spa
elike hypersurfa
es is

� = �dt.

the shift ve
tor �

i

, whi
h are often 
hosen to vary with position. Figure 2.1 shows a

s
hemati
 of the type of 
oordinates used in the ADM formalism. The lapse de�nes

the relation between 
oordinate time t and the proper time � measured by observers

moving normally to the spa
elike hypersurfa
es; this relation is given by � = �dt.

The hyperboli
 
hara
ter of Einstein's equation

G

��

= 8�T

��

allows us to solve the equation by means of an initial value problem, in whi
h we

spe
ify data on some initial spa
elike hypersurfa
e and determine the geometry of

spa
etime at later values of t via a set of equations of motion. Einstein's tensor

equation 
onsists of 10 equations for 10 variables. Four of these variables 
an be


hosen arbitrarily as a result of 
oordinate (or \gauge") freedom. Thus we have an

overdetermined system of 10 equations for six variables. Six of the equations 
ontain

se
ond time derivatives of the 3-metri
 g

ij

and are referred to as evolution equations.

The remaining set of four equations (whi
h do not 
ontain se
ond time derivatives)

are 
onstraint equations, whi
h must be satis�ed on ea
h spa
elike hypersurfa
e

to ensure that the evolution produ
es valid solutions to Einstein's equation. The

10



four 
onstraints on the six evolution equations imply that there are two degrees of

freedom in the theory, su
h as the two polarizations available for gravitational wave

propagation.

The stru
ture of the Bian
hi identities tells us that if the initial data satis�es

the 
onstraint equations, the resulting evolution equations preserve these 
onstraints

for all time. Numeri
ally, however, these 
onstraints are solved imperfe
tly and some


are must given to the spe
i�
 form of evolution s
heme used in a numeri
al simula-

tion. The ADM formalism provides only a quasi-hyperboli
 system of equations to

solve. A host of expli
itly hyperboli
 formalisms [5, 14, 40, 41℄ have re
ently re
eived

attention, and are being implemented in numeri
al relativity 
odes [16, 57, 59, 92℄.

(For a review of hyperboli
 formulations, see the review by Reula [83℄). Neverthe-

less, the ADM formalism has provided the ba
kbone for evolution 
odes for many

years, and we will employ it (minimally) in Chapters 3 and 4 for our evolution of

s
alar �elds in spheri
al symmetry.

2.1.2 Criti
al Phenomena

Note: Mu
h of the dis
ussion in this subse
tion is taken from a paper written with

Matthew W. Choptuik [56℄.

Over the past de
ade, detailed studies of models of gravitational 
ollapse

have revealed that the threshold of bla
k hole formation is generi
ally 
hara
terized

by spe
ial, \
riti
al" solutions. The features of these solutions are known as \
riti
al

phenomena", and arise in even the simplest 
ollapse models, su
h as a model 
onsist-

ing of a single real massless s
alar �eld, minimally 
oupled to the general relativisti


�eld in spheri
al symmetry [24℄. Although we present here a brief overview of bla
k

hole 
riti
al phenomena, we suggest that interested readers 
onsult the ex
ellent

reviews by Gundla
h [45, 46℄ for many additional details.

The impetus for the pioneering study of 
riti
al behavior 
ame from

11



Christodoulou who, in the 
ourse of his analyti
 studies of the Einstein-Massless-

Klein-Gordon system in spheri
al symmetry (
f. [31, 32℄) posed the following ques-

tion [25℄: Consider a generi
 smooth one-parameter family of initial data, su
h that

for large values of the parameter p a bla
k hole is formed, and for small values of

p no bla
k hole is formed. If one performs a bise
tion sear
h to obtain the 
riti
al

value p

?

for whi
h bla
k hole is just barely formed, will this bla
k hole have �nite or

in�nitesimal mass? Choptuik was able to demonstrate, using sophisti
ated numer-

i
al te
hniques, that for a massless s
alar �eld, the answer to this question is the

latter. In so doing, he observed that all families of initial data near the 
riti
al point

evolve to a single solution, term the \
riti
al solution", whi
h serves as intermediate

attra
tor.

In subsequent studies 
arried out sin
e then, it has invariably turned out that

the solutions whi
h appear in the strongly-
oupled regime of the 
al
ulations (i.e.

the 
riti
al solution), are almost totally independent of the spe
i�
s of the parti
ular

family used as a generator. In fa
t, the only initial-data dependen
e whi
h has been

observed so far in 
riti
al 
ollapse o

urs in models for whi
h there is more than one

distin
t bla
k-hole-threshold solution. In this sense then, bla
k hole 
riti
al solutions

are akin to, for example, the S
hwarzs
hild solution, whi
h 
an be formed through

the 
ollapse of virtually any type and/or shape of spheri
ally distributed matter.

In parti
ular, like the S
hwarzs
hild solution, bla
k hole 
riti
al solutions possess

additional symmetry (beyond spheri
al symmetry) whi
h, to date, has either been

a time-translation symmetry, in whi
h the 
riti
al solution is stati
 or periodi
, or a

s
ale-translation symmetry (hometheti
ity), in whi
h the 
riti
al solution is either


ontinuously or dis
retely self-similar (CSS or DSS).

However, in 
lear 
ontrast to the S
hwarzs
hild solution, bla
k hole threshold

solutions are, by 
onstru
tion, unstable. Indeed, after seminal work by Evans and

Coleman [38℄ and by Koike et al [64℄, we have 
ome to understand that 
riti
al

12



solutions are in some sense minimally unstable, in that they tend to have pre
isely

one unstable mode in linear perturbation theory. Thus letting p ! p

?

amounts to

minimizing or \tuning away" the initial amplitude of the unstable mode present in

the system.

Christodoulou's question identi�ed two distin
t possibilities for bla
k hole

threshold phenomena, and both types have been observed. Whi
h type is observed

depends in general upon the type of matter model and the initial data used| some

models exhibit both types of 
riti
al behavior. Histori
ally, Choptuik termed these

Type I and Type II solutions, in a loose analogy to phase transitions in statisti
al

me
hani
s, but at least at this jun
ture, we 
ould equally well label the 
riti
al solu-

tions by their symmetries (i.e. stati
/periodi
 or CSS/DSS) . For Type I solutions,

there is a �nite minimum bla
k hole mass whi
h 
an be formed, and, in a

ord with

their stati
/periodi
 nature, there is a s
aling law, � � �
 ln jp � p

?

j, relating the

lifetime, � , of a near-
riti
al solution to the proximity of the solution to the 
riti
al

point. Here 
 is a model-spe
i�
 exponent whi
h is the re
ipro
al of the real part

of the eigenvalue asso
iated with the unstable mode. On the other hand, Type II


riti
al behavior|less relevant to the 
urrent study|is 
hara
terized by arbitrar-

ily small bla
k hole mass at threshold, and 
riti
al solutions whi
h are generi
ally

self-similar.

The dire
t 
onstru
tion, or simulation, of 
riti
al solutions, has thus far been

performed almost ex
lusively within the ansatz of spheri
al symmetry. In the spher-

i
al 
ase one must 
ouple to at least one matter �eld for non-trivial dynami
s, and

spheri
ally symmetri
 
riti
al solutions for a 
onsiderable variety of models have

now been 
onstru
ted and analyzed. In addition to the massless s
alar 
ase men-

tioned above, these in
lude solutions 
ontaining a perfe
t 
uid [38, 74℄, a s
alar

non-Abelian gauge �eld [30℄, and parti
ularly germane to the 
urrent work, a mas-

sive real s
alar �eld [15℄. The work of Abrahams and Evans [2℄, whi
h 
onsidered
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axisymmetri
 
riti
al 
ollapse of gravitational waves, remains notable for being the

only instan
e of a reasonably well-resolved non-spheri
al 
riti
al solution. (Stud-

ies involving Brill waves in three dimensions have demonstrated the existen
e of

super-
riti
al and sub-
riti
al solutions, however isolation and study of the 
riti
al

solutions per se will require 
onsiderably more resolution than that used in those

studies. See [4, 10℄.)

In Chapter 3, we will dis
uss 
riti
al phenomena asso
iated with a massive


omplex s
alar �eld, whi
h is observed when a boson star is \perturbed" by a �nely-

tuned pulse of massless real s
alar �eld.

2.1.3 The Kerr Solution

In Chapter 6, we will 
onsider the dynami
s of a 
ompled s
alar �eld 
oupled to an

ele
tromagneti
 �eld, both evolving in a (ba
kground) Kerr spa
etime. The Kerr

solution is a stationary, axisymmetri
 va
uum solution to the Einstein equation.

That is, the Kerr solution possesses two Killing ve
tor �elds, one timelike and the

other a \rotational" spa
elike ve
tor �eld. In essen
e, it des
ribes the spa
etime of a

un
harged, rotating bla
k hole. The more general Kerr-Newman solution allows for

the in
lusion of a net ele
tri
 
harge on the bla
k hole, however su
h generality is not

thought to be ne
essary for astrophysi
al appli
ations, sin
e any 
harge separation is

expe
ted to be qui
kly neutralized via the attra
tion of oppositely-
harged matter.

Typi
ally one sees the Kerr line element written in Boyer-Lindquist (BL)


oordinates:

ds

2

= �

�� a

2

sin

2

�

%

2

dt

2

� 2a

2Mr sin

2

�

%

2

dtd'

+

%

2

�

dr

2

+ %

2

d�

2

+

�

%

2

sin

2

�d'

2

; (2.1)

where

� � r

2

� 2Mr + a

2

; (2.2)
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%

2

� r

2

+ a

2


os

2

�; (2.3)

� � (r

2

+ a

2

)

2

� a

2

�sin

2

�; (2.4)

M is the mass of the hole and a the bla
k hole angular momentum per unit mass.

We will only be 
onsidering the range a

2

�M

2

.

Kerr-S
hild 
oordinates

Kerr-S
hild (KS) 
oordinates are a \rotational" analogue of the well-known Ingo-

ing Eddington-Finkelstein (IEF) 
oordinates. KS 
oordinates 
an be obtained by

transforming the BL 
oordinates t and ' into the KS 
oordinates

~

t and ~' a

ording

to:

d

~

t+ dr = dt+

2Mr +�

�

dr

d ~' = d'+

a

�

dr :

Thus we arrive at the Kerr line element in KS form:

ds

2

= �

�

1�

2Mr

%

2

�

d

~

t

2

�

4Mar

%

2

sin

2

�d

~

td ~'+

4Mr

%

2

d

~

tdr +

�

1 +

2Mr

%

2

�

dr

2

�

2a

�

1 +

2Mr

%

2

�

sin

2

�drd ~'+ %

2

d�

2

+ sin

2

�

�

%

2

+ a

2

�

1 +

2Mr

%

2

�

sin

2

�

�

d ~'

2

:

(2.5)

Unlike the BL 
oordinates typi
ally used for studies of astrophysi
al bla
k

holes, KS 
oordinates have no 
oordinate singularity at the event horizon. KS


oordinates are an example of a \horizon-adapted 
oordinate system" [39, 77℄.

For a brief dis
ussion of some properties of the Kerr solutions, we follow

d'Inverno [37℄. The Kerr solution possesses two event horizons, r

�

and two surfa
es

of in�nite redshift, S

�

. The event horizons o

ur where the surfa
es of 
onstant r

be
ome null, whi
h 
orresponds to where g

rr

is zero. From this we �nd the event
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horizons are given by roots of

� = r

2

� 2Mr + a

2

= 0;

whi
h are

r

�

=M �

�

M

2

� a

2

�

1=2

: (2.6)

So the event horizons are always surfa
es of 
onstant r, but have smaller radii for

larger values of a. (Again, we are only interested in the regime a

2

� M

2

.) Sin
e

we will be 
on
erned with solutions exterior to the bla
k hole, we will only need to

retain the outer event horizon, and will simply refer to r

+

as the \event horizon."

The lo
ation of surfa
es of in�nite redshift are found where the t-t 
omponent

of the metri
 is zero [37℄. Inspe
ting the metri
 (2.5), we see that this o

urs for

%

2

� 2Mr = 0. This gives us two roots in r,

r

S

�

=M �

�

M

2

� a

2


os

2

�

�

1=2

: (2.7)

Thus, as the bla
k hole spin in
reases, the surfa
e of in�nite redshift is \pin
hed"

along the axis of rotation, as shown in in Figure 2.2.

The region between r

+

and S

+

is 
alled the ergosphere, in whi
h the asymp-

toti
 time translation Killing �eld �

�

= (�=�t)

�

be
omes spa
elike [100℄. In this

region, an observer 
annot remain stationary with respe
t to observers at spatial

in�nity, but must orbit in the dire
tion of the bla
k hole's rotation. For this reason,

S

+

is also known as the stationary limit surfa
e. The ergosphere allows for some

interesting physi
s, be
ause in this region the energy of a test parti
le is not ne
es-

sarily positive. Penrose [80℄ was the �rst to point out that, in prin
iple, this implies

that energy 
an be me
hani
ally extra
ted from the spin of the bla
k hole.

2.1.4 The Membrane Paradigm

The Membrane Paradigm (MP) is a view of bla
k holes intended for appli
ations

in astrophysi
s. It was set out by a series of papers in the late 1970's and early
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Figure 2.2: Lo
ations of r+, the outer event horizon, and S

+

, the outer surfa
e of

in�nite redshift, for three values of a. For a = 0 (dashed lines), r

+

and S

+

are both

spheri
al, and 
oin
ide. As a in
reases, r

+

de
reases and S

+

be
omes more oblate,

extended out from r

+

at the equator but 
oin
iding with r

+

at the poles. We show

data for two nonzero values of a, a = 0:75 (dotted line) and a = 1 (solid line), in

whi
h the event horizon is the 
ir
le on the interior, and S

+

is shown by the 
urve

exterior to the 
ir
le.
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1980's, and presented 
ohesively in a book [99℄. We will not attempt to go into the

mathemati
al details of the MP, but we mention it be
ause of its signi�
an
e for

astrophysi
s, for its parti
ular utility in des
ribing the Blandford-Znajek pro
ess of

se
tion 2.3.2, whi
h we hope to simulate in the future as goal of the s
alar a

retion

study presented in Chapter 6.

In the MP, one 
onsiders a boundary layer slightly outside the event horizon

to be a material surfa
e, having properties su
h as ele
tri
al resistivity, surfa
e 
ur-

rent and 
harge, temperature and entropy. While it is intended to serve prin
ipally

as an aid to intuition regarding physi
al pro
esses in bla
k hole astrophysi
s, the

MP is mathemati
ally rigorous and o�ers an des
ription identi
al to that provided

by the usual 
urved-spa
etime viewpoint, for the region of spa
etime exterior to a

bla
k hole. (Inside the event horizon, however, the MP 
ompletely la
ks meaning.)

It is worth noting that the mental images and terminology we use to 
om-

muni
ate 
ertain s
ienti�
 
on
epts 
an have a signi�
ant impa
t on the physi
al

intuition we have, and on the sorts of questions we ask in resear
h.

Prior to the mid-1960's, the obje
ts we now refer to as \bla
k holes" were of-

ten 
alled \frozen stars." This name arose be
ause, for stationary observers wat
hing

the 
ollapse of a star, the evolution would appear to slow down as the gravitational

redshift in
reased, and the evolution would apparently stop when the star rea
hed

an \in�nite redshift surfa
e." Su
h an obje
t would forever be \frozen" from the

point of view of distant observers. It was known from the previous work of Oppen-

heimer and Snyder [76℄ that observers freely falling with the star would see no su
h

\freezing", but rather would rather see the 
ollapse right up until the (and their)

very end, when they arrived at the 
urvature singularity. The term 
ollapsed star

was used to des
ribe the physi
s from the \
omoving view" of Oppenheimer and

Snyder. However, this 
omoving view was not seen as being relevant for astrophys-

i
al appli
ations, be
ause nothing inside the surfa
e of in�nite redshift 
ould ever
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in
uen
e the physi
s outside. The \frozen star" viewpoint prevented physi
ists from

realizing that bla
k holes 
an be dynami
al obje
ts whi
h 
an pulsate, radiate and

release energy [98℄.

Later, the \bla
k hole viewpoint" be
ame popular with the advent of global

analysis of bla
k hole spa
etimes, in whi
h 
oordinate systems su
h as those intro-

du
ed by Eddington and Finkelstein, rather than S
hwarzs
hild 
oordinates, be
ame

systems of 
hoi
e for des
riptions of stellar 
ollapse. The 
onformal diagrams popu-

larized by Penrose [79, 81℄ served as powerful illustrations of the global properties of

bla
k hole spa
etimes. Rather than \frozen stars", bla
k holes were seen as regions

of spa
etime from whi
h nothing 
ould get out, and the surfa
e of in�nite redshift

was given the name \horizon" to des
ribe the dis
onne
tedness of the spa
etime

inside the S
hwarzs
hild radius from the outside world. Hawking and others pro-

vided theorems regarding 
ertain aspe
ts of the dynami
s of the horizon. All of

the mathemati
s asso
iated with the \bla
k hole viewpoint" were equivalent to the

mathemati
s of the \frozen star" viewpoint, yet the use of the former 
harted a


ourse of resear
h that the latter 
ould not provide.

Somewhat later, it was noted that the in
uen
e of a nearby gravitating body


an distort the horizon of a bla
k hole, and also that a nearby ele
tri
 
harge 
an

produ
e a 
hange in the �elds in the vi
inity of the hole just as if there were a 
harge

separation (i.e. ele
tri
al polarization) indu
ed on the horizon itself [48℄. Further

work �lled in more ways in whi
h ele
tromagnetism in the vi
inity of the horizon


an be likened, even mapped, to the physi
s nearby a material membrane, having

properties like resistivity and surfa
e 
urrent [36℄, and temperature [50℄.

We will employ the Membrane Paradigm only brie
y in this dissertation, to

help provide an intuitive understanding of the Blandford-Znajek pro
ess (Se
tion

2.3.2), however we re-emphasize that this paradigm provides a view of bla
k holes

whi
h is helpful to astronomers in a wide variety of appli
ations.
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2.2 Finite Di�eren
e Methods

This thesis deals with the appli
ation of �nite di�eren
e te
hniques. There are

many other numeri
al methods available to resear
hers; most 
ommonly, spe
tral

methods and �nite element methods. Finite di�eren
e methods 
an often be simpler

to implement than other methods, parti
ularly for solving systems of equations on a

domain with regular boundaries. We present here a brief overview of some relevant

aspe
ts of �nite di�eren
e methods.

Di�eren
e Operators

We 
onstru
t �nite di�eren
e operators via Taylor expansion in the mesh spa
ing.

For example, suppose we wish to solve the transport equation,

�

t

u = �

x

u;

on a grid using �nite di�eren
e te
hniques. This equation also admits 
losed-form

analyti
 solutions whi
h makes it a useful test 
ase. Instead of the a
tual solution

u(t; x) to the 
ontinuum equations, we work with û

n

j

, the solution to the �nite

di�eren
e equations. We desire that û

n

j

is very nearly the same as u(n�t; j�x) for

all n and j, but ensuring some level of a

ura
y in our �nite di�eren
e solution

requires that we maintain some level of a

ura
y in the �nite di�eren
e equations

themselves. Consider the partial derivative �

x

u. A �nite di�eren
e approximation

for this might be

û

n

j+1

� û

n

j�1

2�x

: (2.8)

How a

urate of an �nite di�eren
e expression is this? Let us 
onstru
t two

Taylor expansions about u(t = n�t; x = j�x):

û

n

j+1

= u(t; x) + �x�

x

u(t; x) + 1=2�x

2

�

2

x

u(t; x) +O(�x

3

) (2.9)
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û

n

j�1

= u(t; x)��x�

x

u(t; x) + 1=2�x

2

�

2

x

u(t; x) +O(�x

3

) (2.10)

(2.11)

Subtra
ting the se
ond equation from the �rst and dividing by 2�x gives us

û

n

j+1

� û

n

j�1

2�x

= �

x

u(t; x) +O(�x

2

):

We label the a

ura
y of an operator by the order of the terms whi
h are

negle
ted in the expansion, and thus we say that (2.8) is se
ond order a

urate.

Convergen
e

We would like some assuran
e that the solutions we obtain from the �nite di�eren
e


ode are a
tually good approximations to the solutions of the 
ontinuum equations.

As we de
rease 
hara
teristi
 size h of the mesh spa
ing, the grid fun
tions 
ome


loser to de�ning quantities on a 
ontinuum, and the �nite di�eren
e operators

approa
h the partial derivatives. Thus we expe
t the �nite di�eren
e solutions to


onverge to the \true solutions" in the limit h! 0.

In his 1910 paper, L.F. Ri
hardson [85℄ des
ribed the relationship between

the error of a �nite di�eren
e 
al
ulation and the mesh spa
ing h. Consider a

(
ontinuum) di�erential system denoted by

Lu = f (2.12)

where L is some di�erential operator, f is a spe
i�ed fun
tion, and u is the solution

to the equation. Redu
ing this to a �nite di�eren
e system involves using a �nite

di�eren
e approximation

^

L of L (
onstru
ted via the Taylor expansion method men-

tioned above), with the 
orresponding

^

f (=f restri
ted to the mesh) and the �nite

di�eren
e solution û:

^

Lû =

^

f : (2.13)
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We will also refer to û as a grid fun
tion. We then de�ne the trun
ation error �̂ to

be

�̂ �

^

Lu�

^

f ; (2.14)

For 
entered di�eren
e operators

^

L, the trun
ation error will be an even power series

in the mesh spa
ing h. The trun
ation error is related to the solution error ê � u� û

by

�̂ =

^

L (û+ ê)�

^

f =

^

Lê:

Ri
hardson noted that, in the limit h ! 0 for 
entered di�eren
e equations, the

solution error ê will also appear as a even-powered series in the mesh spa
ing h, are

related by

ê = h

2

e

2

+ h

4

e

4

+ ::: (2.15)

where e

2

, e

4

, et
. are smooth \error fun
tions" whi
h are independent of the mesh

spa
ing. We refer to (2.15) as a Ri
hardson expansion.

For problems in whi
h the 
ontinuum solution u is not known, we 
annot

obtain an exa
t measure of the solution error or the trun
ation error. Using (2.15)

and �nite di�erent solutions û

h

and û

2h

obtained on two di�erent grids with spa
ings

h and 2h respe
tively, we 
an obtain approximations to these error quantities:

û

2h

� û

h

h

2

= 3e

2

+ 15h

2

e

4

+ ::: ; (2.16)

where the subtra
tion is performed on the interse
tion of û

h

and û

2h

.

We 
an 
he
k the 
onvergen
e of our numeri
al 
ode by observing how well

the solutions obey the properties of Ri
hardson extrapolation. If the 
ode is 
on-

verging properly, then three grid fun
tions û

h

, û

2h

and û

4h

, obtained on grids with

spa
ings h, 2h and 4h, respe
tively, should to leading order produ
e the same error

fun
tion e

2

. Given that

û

4h

� û

2h

h

2

= 12e

2

+ 15h

2

e

4

+ ::: ;
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we �nd proper se
ond-order 
onvergen
e when

û

4h

� û

2h

' 4

�

û

2h

� û

h

�

:

To obtain a measure of the global 
onvergen
e of the s
heme, we �rst de�ne the L

2

norm jjûjj

2

to be

jjûjj

2

=

"

1

N

N

X

i=1

ju

i

j

2

#

1=2

;

whereN is the number of elements (grid points) in û. We then de�ne the 
onvergen
e

fa
tor Q as

Q �

jjû

4h

� û

2h

jj

2

jjû

2h

� û

h

jj

2

; (2.17)

for whi
h global se
ond-order 
onvergen
e is indi
ated by Q = 4.

The assumption of Ri
hardson expandability is essential to the Berger and

Oliger adaptive mesh re�nement method des
ribed in Chapter 5, be
ause we will

use Ri
hardson expansion to obtain an estimate of the lo
al trun
ation error to

determine where new grids should be pla
ed.

Stability

Usually we wish to evolve from some initial state towards some �nal state, and would

like to minimize the amount of 
omputational work in between. One might ask the

question \How large of a time step 
an I take?" The answer depends on the nature

of the numeri
al s
heme and the resolution of the grid. This question is 
losely

related to the work of Courant, Friedri
hs and Levy (CFL) des
ribed in [47℄ and

[82℄. The rule of thumb produ
ed by CFL 
an be summed up in the following: For

stability, the numeri
al domain of dependen
e must in
lude the physi
al domain of

dependen
e. Figure 2.3 shows a pi
ture of this. Stri
tly speaking, this only applies

to truly hyperboli
 systems in whi
h 
hara
teristi
s are well-de�ned.

For the boson star study in Chapter 3, the simulation 
ode uses an expli
it

s
heme 
alled the \leapfrog" s
heme, for whi
h the CFL 
ondition will be of im-
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Figure 2.3: S
hemati
 of the CFL 
ondition. This shows an expli
it numeri
al

s
heme, for whi
h the numeri
al domain of dependen
e of a grid point at the ad-

van
ed time level n+ 1 (bla
k dot) is bounded by the grid points on either side at

the previous time n.

portan
e. For the s
alar a

retion study of Chapter 6, we will endeavor to use an

impli
it Crank-Ni
holson method, for whi
h the numeri
al domain of dependen
e is

the entire 
omputational (spatial) domain. A more rigorous stability 
onsideration

due to Von Neumann (des
ribed in [6℄) shows the Crank-Ni
holson method to be

un
onditionally stable.

2.3 Topi
s in Bla
k Hole A

retion

2.3.1 General Review

Shakura and Zunyaev [93℄ presented the �rst signi�
ant studies of bla
k hole a

re-

tion, in whi
h they 
on
eived that a gas 
loud with an initial angular momentum

would 
ollapse to form an a

retion disk, with some of the material falling into the

bla
k hole. In parti
ular, these studies 
onsidered a model of a thin disk, in whi
h

the height of the disk was very small 
ompared to the disk radius. It was previously

assumed that some sort of dissipative me
hanism would be a
tive in the disk, per-

haps gas vis
osity or turbulen
e, but no one was quite 
lear on what the sour
e of

this dissipation should be. Shakura and Zunyaev bypassed mu
h of this ambiguity

via their \�-Model", in whi
h the total e�e
t of whatever dissipative me
hanisms
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were a
tive in the disk 
ould be summed up by a single vis
osity parameter, whi
h

they 
alled �. The role of magneti
 �elds was often negle
ted in early studies of

a

retion. For a long time the spe
i�
 avenue for angular momentum 
onserva-

tion was a major mystery in astrophysi
s. Re
ently, John Hawley [51℄ has shown

via three-dimensional numeri
al simulation that magnetohydrodynami
 turbulen
e

provides suÆ
ient transport of angular momentum. We 
onsider here two important

pro
esses involving magneti
 �elds in highly energeti
 astrophysi
al systems.

2.3.2 The Blandford-Znajek Pro
ess

In the Blandford-Znajek pro
ess [13℄, we have a virtual \
ir
uit" in whi
h magneti


�elds lines threading the bla
k hole a
t like wires. This me
hanism is best explained

via the Membrane Paradigm of se
tion 2.1.4.

First 
onsider a simple system in whi
h a spinning, spheri
al 
ondu
tor is

pla
ed in a uniform magneti
 �eld

~

B = B

z

^

k. The fa
t that the 
ondu
tor is spinning

in this �eld means that 
harges will move along the surfa
e, with an overabundan
e

of positive 
harges a

umulating at the equator, and an overabundan
e of negative


harges a

umulating near the poles, until some for
e balan
e is set up between the

magneti
 for
e and the indu
ed ele
tri
 for
e. Thus the spinning sphere be
omes

a battery. We 
an 
onne
t a resistive load to this battery by adding wires whi
h

tou
h and slip along the poles equator and poles as shown in �gure 2.4, and drive a


urrent through the load, thus \extra
ting energy" from the spinning 
ondu
tor to

the load.

Now instead of a typi
al 
ondu
tor, imagine that we are dealing with the

membrane-like horizon of a bla
k hole, and instead of wires, we have magneti
 �eld

lines along whi
h 
harged plasma 
an stream. By \hooking up" some resistive load

to these \wires", we 
an extra
t energy from the indu
ed ele
tromotive for
e on the

bla
k hole horizon. This is the essen
e of the Blandford-Znajek pro
ess, a s
hemati
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Figure 2.4: A spinning spheri
al 
ondu
tor as a battery. The uniform magneti
 �eld

~

B = B

z

^

k indu
es a 
harge separation between the equator and poles, whi
h when


onne
ted via wires 
an drive 
urrent I through a resistive load R

Load

.

of whi
h is shown in Figure 2.5.

Imagine that in some region 
lose to the bla
k hole, magneti
 �elds are strong

enough that a for
e-free magnetosphere is set up, i.e. 
harges 
an only 
ow along

magneti
 �eld lines, i.e.

F

��

J

�

= 0:

Through some pro
ess su
h as parti
le-antiparti
le pair 
reation, we obtain a sit-

uation in whi
h positive 
harges 
ow into the hole along the poles, and negative


harges 
ow in at the equator.

At some distan
e away from the bla
k hole, the \for
e-free" approximation

will fail, and ele
tri
 equipotential surfa
es will deviate from magneti
 �eld lines.

These surfa
es will \
onne
t up" over the poles, and we will have a net ele
tri
 �eld

in the verti
al dire
tion. Blandford and Znajek spe
ulated that the resistive \load"

in this system might therefore take the form of jets of 
harged parti
les, whi
h are

a

elerated via these verti
al �eld lines. This provided a natural explanation for

the highly-
ollimated, high-speed jets whi
h are observed to originate near some


ompa
t astrophysi
al sour
es.
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Stretched
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Figure 2.5: A s
hemati
 of the Blandford-Znajek me
hanism. Positive 
harges

stream inward along magneti
 �eld line 1, and negative 
harges stream inward along

�eld line 2. Equipotential surfa
es are shown as dotted lines. (The author's render-

ing of a �gure in [99℄.)

2.3.3 Magneti
 Torques at the Marginally Stable Orbit

Early models of a

retion [93℄, [75℄ were performed within the thin-disk model with

what is 
alled a \no-torque" boundary 
ondition at the marginally stable orbit

(MSO), whi
h is generally 
onsidered to be the inner edge of the a

retion disk.

For the no-torque 
ondition, 
uid whi
h rea
hes the MSO is assumed to freely fall

into the bla
k hole, and have no e�e
t on the exterior part of the a

retion disk.

In other words, the sort of vis
ous torques whi
h were assumed to be operating

throughout the disk (su
h as in Shakura and Sunyaev's �-model) were assumed to

be 
ompletely negligable at and inside the MSO. The no-torque inner boundary


ondition was justi�ed via an argument that infalling gas would qui
kly be
ome


ausally dis
onne
ted from the rest of the disk by nature of a low sound speed [75℄.

From this assumption, one 
an derive expressions for a

retion eÆ
ien
y (
onversion

of rest mass into radiation) whi
h range from 5% for gas falling into S
hwarzs
hild

bla
k holes to 42% for gas falling into maximally-rotating (a

2

= M

2

) Kerr bla
k
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holes [75℄. A short time ago, Charles Gammie [42℄ began to seriously 
onsider

the e�e
t of magneti
 �elds on a

retion eÆ
ien
y. Gammie knew that magneti


�elds 
ould exert a torque, and that perhaps the no-torque boundary 
ondition

was not appli
able to astrophysi
al, magnetized a

retion disks. In fa
t, he found

that the a

retion eÆ
ien
y 
an be greatly enhan
ed by the presen
e of magneti


�elds, and 
an even ex
eed unity. In other words, Gammie found s
enarios in

whi
h energy was being extra
ted from the bla
k hole via the magneti
 torque.

Eri
 Agol and Julian Krolik further explored the impli
ations of magneti
 torques

operating at the marginally stable orbit [3℄. A most re
ent 
ontribution on this

subje
t is the work of J. Hawley and Krolik [53℄, who show via numeri
al simulation

that there 
an be signi�
ant (magneti
) torque at the marginally stable orbit, and

that this torque is in fa
t 
ontinuous a
ross the \inner boundary" of the a

retion

disk. The s
alar a

retion study 
onsidered in Chapter 6 of this thesis was in part

aimed at obtaining results regarding the signi�
an
e of magneti
 torques at the inner

boundary. The new work by Hawley and Krolik appears to provide the answers we

were originally sear
hing for, however we still hope to �nd many interesting and

unexpe
ted phenomena in the 
harged s
alar system.
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Chapter 3

Criti
ally-Perturbed Boson Stars

Note: Most of the results and dis
ussion given in this 
hapter are from a paper whi
h

M.W. Choptuik and I re
ently submitted to Phys. Rev. D. [56℄.

3.1 Introdu
tion

Our 
urrent interest is a 
riti
al-phenomena-inspired study of the dynami
s asso
i-

ated with \boson stars" [62, 86, 34℄, a 
lass of equilibrium solutions to the Einstein-

Klein Gordon system for massive 
omplex �elds, whi
h are supported against grav-

itational 
ollapse by the e�e
tive pressure due to the dispersive nature of a massive

Klein-Gordon �eld. Studies of boson stars began with the works of Kaup [62℄ and

RuÆni and Bonnazola [86℄, who demonstrated that stable equilibrium 
on�gura-

tions exist for self-gravitating massive Klein-Gordon �elds. These 
on�gurations

are supported against gravitational 
ollapse by the e�e
tive pressure due to the dis-

persion relation of the Klein-Gordon �eld. Later this work was extended by Colpi

et al. [34℄ to in
lude a nonlinear self-intera
tion term whi
h 
an give rise to an ad-

ditional pressure, and 
an allow for larger boson stars having masses and sizes more

relevant to astrophysi
al appli
ations. Predi
tions from parti
le physi
s regarding
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the existen
e of one or more s
alar or pseudo-s
alar parti
les kindled greater interest

in the study of boson stars as astrophysi
al obje
ts, perhaps as a 
ontribution to

dark matter in the universe. Some astrophysi
al aspe
ts of boson stars have been

investigated by Lee and Koh [66℄ and D�abrowski and S
hun
k [35℄. Stability studies

of boson stars 
ontinued with Gleiser and Watkins [43℄, as well as Lee and Pang [67℄,

who showed that there exists a 
riti
al value of the 
entral density whi
h marks the

transition between boson stars whi
h are stable with respe
t to in�nitesimal radial

perturbations and those whi
h are not. Dynami
al stability studies were 
arried out

by Seidel and Suen [89℄ in whi
h radial perturbations to equilibrium 
on�gurations

were applied by adding or removing mass from a se
tion of the star. They then

solved for the resulting evolution numeri
ally, and found that a boson star on the

unstable bran
h will either form a bla
k hole or radiate s
alar material and form

a boson star on the stable bran
h. They also showed that perturbed stable boson

stars will os
illate with a 
hara
teristi
 frequen
y whi
h depends on the mass of the

star. Along with Balakrishna, Seidel and Suen later extended this work to in
lude

the e�e
ts of self-intera
ting �elds and \ex
ited" states in whi
h the �eld 
ontains

one or more nodes [9℄. They found that all ex
ited states are unstable and either

form bla
k holes or radiate s
alar material until a stable \ground state" (zero node)

boson star is formed. Their stability study will be extended in this 
hapter, in whi
h

we 
onsider large radial perturbations of a boson star whi
h drive it to the threshold

of bla
k hole formation. For further reviews on the subje
t of boson stars, see Jetzer

[61℄ or Mielke and S
hun
k [71℄.

As mentioned in Chapter 2, a paper 
losely related to this work is that of

Brady et al. [15℄, whi
h des
ribed a dynami
al study of 
riti
al solutions of a massive

real s
alar �eld. Those authors demonstrated s
enarios in whi
h bla
k holes 
ould

be formed with arbitrarily small mass (Type II transitions), and those in whi
h the

bla
k holes formed had a �nite minimum mass (Type I transitions). The boundary
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between these regimes seemed to be the relative length s
ale of the pulse of initial

data 
ompared to the Compton wavelength asso
iated with the boson mass. Initial

data whi
h was \kineti
 energy dominated" evolved in a manner essentially similar

to the evolution of a massless s
alar �eld. Initial data pulses having widths larger

than the length s
ale set by the boson mass were \potential dominated", providing a


hara
teristi
 s
ale for the formation of the 
riti
al solutions. Brady et al. found that

the resulting Type I 
riti
al solutions 
orresponded to a 
lass of equilibrium solutions

dis
overed by Seidel and Suen [90℄, whi
h are 
alled \os
illating soliton stars." These

soliton stars share many 
hara
teristi
 with the 
omplex-valued boson stars, su
h

as the relationship between the radius and mass of the star. Both types of \stars"

have a maximum mass, and show the same overall behavior as \real" (fermion) stars

in terms of the turn-over in their respe
tive stability 
urves. Interestingly, although

the soliton stars are not stati
|they are periodi
 (or quasi-periodi
)|many of the

same ma
ros
opi
 properties seen in 
uid stars are still observed.

In this 
hapter, we 
onstru
t 
riti
al solutions of the Einstein equations 
ou-

pled to a massive, 
omplex s
alar �eld dynami
ally, by simulating the implosion of

a spheri
al shell of massless real s
alar �eld around an \en
losed" boson star. The

massless �eld implodes toward the boson star and the two �elds undergo a (purely

gravitational) \
ollision." The massless pulse then passes through the origin, ex-

plodes and 
ontinues to r ! 1, while the massive 
omplex (boson star) �eld is


ompressed into a state whi
h ultimately either forms a bla
k hole or disperses. We


an thus play the \interpolation game" using initial data whi
h result in bla
k hole

formation, and initial data whi
h give rise to dispersal: spe
i�
ally, we vary the

initial amplitude of the massless pulse to tune to a 
riti
al solution. We analyze the

bla
k hole threshold solutions obtained in this manner, and dis
uss the similarities

between our 
riti
al solutions for the self-gravitating 
omplex massive s
alar �eld

and boson stars on the unstable bran
h. To further this dis
ussion, we extend the
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work of Gleiser and Watkins [43℄ and 
ompare the results of the simulations with

those of linear perturbation theory.

The layout of the remainder this 
hapter is as follows: In Se
tion 3.2, we

des
ribe the mathemati
al basis for our numeri
al simulations. In Se
tion 3.3, we

present results from our simulations, in whi
h the Type I 
hara
ter of the 
riti
al

solutions is demonstrated, along with the 
lose similarities one �nds between the

features of the 
riti
al solutions and those of boson stars. In most of the 
riti
al

solutions we �nd a halo of mass near the outer edge of the solution whi
h is not a

feature of boson star equilibrium data. Inside this halo, however, the 
riti
al solu-

tions mat
h the boson star pro�les very well. In Se
tion 3.4, we give a synopsis of

our linear stability analysis of boson star quasinormal modes, from whi
h we obtain

the boson star mode frequen
ies as fun
tions of the 
entral value of the modulus of

the 
omplex �eld. Se
tion 3.5 
on
erns the radial pro�les of the perturbative modes

per se, and in
ludes a 
omparison of the mode shapes and frequen
ies obtained from

perturbation theory with our simulation data. The modes obtained by these two

di�erent methods agree well with ea
h other, although the additional os
illatory

mode in our simulation data is only shown to agree with the 
orresponding boson

star mode in terms of the os
illations in the metri
 and not in the �eld (possibly as

an artifa
t of our simplisti
 approa
h to extra
ting this mode from the simulation).

In Se
tion 3.6 we provide further dis
ussion regarding the properties of the halos

surrounding the 
riti
al solutions. Con
lusions are given in Se
tion 3.7. The ap-

pendi
es of this dissertation give tables of mode frequen
ies versus the 
entral �eld

value of the boson star, details about our �nite di�eren
e 
ode, and details of our

linear stability analysis, whi
h in
ludes a des
ription of our algorithm for �nding

the frequen
ies of boson star modes.
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3.2 S
alar Field Model

A boson star is des
ribed by a 
omplex massive s
alar �eld �, minimally 
oupled to

gravity as given by general relativity. We work solely within the 
ontext of 
lassi
al

�eld theory, and 
hoose units in whi
h G and 
 are unity. Furthermore, sin
e all

lengths in the problem 
an be s
aled by the boson mass m [34℄, we 
hoose m = 1.

To the usual boson star model, we add an additional, massless real s
alar �eld, �

3

,

whi
h is also minimally 
oupled to gravity. This additional s
alar �eld will be used

to dynami
ally \perturb" the boson star.

The equations of motion for the system are then the Einstein equation and

Klein-Gordon equations:

G

��

= R

��

�

1

2

g

��

R = 8�

�

T

C

��

(�) + T

R

��

(�

3

)

�

(3.1)

2��m

2

� = 0 (3.2)

2�

3

= 0 (3.3)

where

8�T

C

��

(�) = �

�

��

�

�

�

+ �

�

�

�

�

�

�� g

��

�

�

�

��

�

�

�

+m

2

j�j

2

�

; (3.4)

8�T

R

��

(�

3

) = 2�

�

�

3

�

�

�

3

� g

��

�

�

�

3

�

�

�

3

; (3.5)

and 2 is the D'Alembertian operator. While more general potentials in (3.2) have

been employed re
ently [9, 88℄, we will restri
t our dis
ussion to the simplest 
ase,

i.e. merely the m

2

�

2

potential. We also stress that the 
omplex s
alar �eld, �, and

the massless, real s
alar �eld, �

3

are 
oupled only through gravity|in parti
ular we

do not in
lude any intera
tion potential V

I

(�; �

3

).

Restri
ting our attention to spheri
al symmetry, we write the most general

spheri
ally-symmetri
 metri
 using S
hwarzs
hild-like \polar-areal" 
oordinates

ds

2

= ��

2

(t; r)dt

2

+ a

2

(t; r)dr

2

+ r

2

d


2

; (3.6)
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and generally make use of the \3+1" formalism of Arnowitt, Deser and Misner [8℄

whi
h regards spa
etime as a foliation of spa
elike hypersurfa
es parameterized by

t (
f. Se
tion 2.1.1.

We write the (spheri
ally-symmetri
) 
omplex �eld, �(t; r), in terms of its


omponents

�(t; r) = �

1

(t; r) + i�

2

(t; r) (3.7)

where �

1

(t; r) and �

2

(t; r) are ea
h real. Again, sin
e our model in
ludes no self-

intera
tion (anharmoni
) potential for the 
omplex �eld, �

1

and �

2

are only 
oupled

through the gravitational �eld.

We then de�ne

�

1

(t; r) � �

0

1

�

2

(t; r) � �

0

2

(3.8)

�

1

(t; r) �

a

�

_

�

1

�

2

(t; r) �

a

�

_

�

2

; (3.9)

�

3

(t; r) = �

0

3

�

3

(t; r) =

a

�

_

�

3

: (3.10)

where

0

� �=�r and _� �=�t:

With these de�nitions, the equations we solve are the Hamiltonian 
onstraint,

a

0

a

=

1� a

2

2r

+

r

2

h

�

1

2

+�

2

2

+�

3

2

+�

1

2

+�

2

2

+�

3

2

+ a

�

�

1

2

+ �

2

2

�i

; (3.11)

(where �

1

2

should be read as (�

1

)

2

), the sli
ing 
ondition,

�

0

�

=

a

2

� 1

r

+

a

0

a

� a

2

r(�

1

2

+ �

2

2

); (3.12)

and the Klein-Gordon equations,

_

�

k

= 3

�

�r

3

 

r

2

�

a

�

k

!

0

� �a�

k

(1� Æ

3k

); (3.13)

where k = 1; 2; 3 and Æ

3k

is a Krone
ker delta used to denote the fa
t that �

3

is a

massless �eld.
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We also have equations whi
h are used to update the spatial gradients of the

s
alar �elds, as well as the s
alar �elds themselves. These follow dire
tly from the

de�nitions (3.8) and (3.9):

_

�

k

=

�

�

a

�

k

�

0

(3.14)

�

k

=

Z

r

0

�

k

d~r (3.15)

Equations (3.11){(3.15) are solved numeri
ally using the se
ond order �nite di�er-

en
e method des
ribed in Appendix B.

Initial 
onditions for our simulations are set up as follows. First, initial data

for the massive �eld are 
onstru
ted from the boson star ansatz

�(t; r) = �

0

(r)e

�i!t

; (3.16)

where we let �

0

(r) be real. Substitution of this ansatz into the full set of equations

(3.11)-(3.15), yields a system of ordinary di�erential equations (ODEs), whose so-

lution, for a given value of the 
entral �eld modulus, is found by \shooting", as

des
ribed in [86℄. On
e the boson star data is in hand, we add the perturbing mass-

less �eld by freely spe
ifying �

3

and �

3

. At this point, all matter quantities have

been spe
i�ed; the initial geometry, a(0; r) and �(0; r) is then �xed by the 
onstraint

and sli
ing equations (3.11) and (3.12).

In relating the simulation results whi
h follow, it is useful to 
onsider the

individual 
ontributions of the 
omplex and real �elds to the total mass distribution

of the spa
e-time, in order that we 
an meaningfully and unambiguously dis
uss, for

example, the ex
hange of mass-energy from the real, massless �eld to the massive,


omplex �eld. By Birkho�'s theorem, in any va
uum region, the mass en
losed

by a sphere of radius r at a given time t is given by the S
hwarzs
hild-like mass

aspe
t fun
tion M(t; r) = r(1� 1=a

2

)=2. However, at lo
ations o

upied by matter,

M(t; r) 
annot ne
essarily be usefully interpreted as a \physi
al" mass. In polar-

areal 
oordinates, the mass aspe
t fun
tion is related to the lo
al energy density
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�(t; r) by

�M(t; r)

�r

= r

2

�(t; r); (3.17)

with �(t; r) given in our 
ase by

�(t; r) =

1

2a

2

h

�

1

2

+�

2

2

+�

1

2

+�

2

2

+ a

2

�

�

1

2

+ �

2

2

�i

+

1

2a

2

h

�

3

2

++�

3

2

i

:

(3.18)

Here, we have expli
itly separated the 
ontributions from the 
omplex and real

�elds. Sin
e �M=�r is given by a linear 
ombination of the 
ontributions from ea
h

�eld, we 
an de
ompose �M=�r so that, in instan
es where there is no overlap in the

supports of the distin
t �elds, we 
an unambiguously refer to the mass due to one

�eld or the other. That is, we 
an refer to the individual 
ontributions of ea
h �eld

to the total mass as being physi
ally meaningful masses in their own rights. Then,

by integrating the 
ontribution of ea
h �eld to �M=�r over some range of radius

(r

min

� � � r

max

), (where there is some region of va
uum starting at r

min

and extending

inward, and some region of va
uum starting at r � r

max

and extending outward),

and demanding that none of the other type of �eld is present in the domain of

integration, we 
an obtain a measure of the mass due to ea
h �eld.

Motivated by su
h 
onsiderations, we de�ne an energy density for the 
om-

plex �eld, �

C

, as

�

C

(t; r) =

1

2a

2

h

�

1

2

+�

2

2

+�

1

2

+�

2

2

+ a

2

�

�

1

2

+ �

2

2

�i

; (3.19)

with a 
orresponding mass aspe
t fun
tion, M

C

(t; r), given by

M

C

(t; r) =

Z

r

0

~r

2

�

C

d~r : (3.20)

Similarly, the energy density due to the real �eld is de�ned as

�

R

(t; r) �

1

2a

2

h

�

3

2

++�

3

2

i

; (3.21)

with a 
orresponding mass aspe
t fun
tion, M

R

(t; r) given by

M

R

(t; r) =

Z

r

0

~r

2

�

R

d~r:
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We again emphasize that in regions where the supports of the di�erent �elds

overlap (and in non-va
uum regions in general) it may not be possible to as
ribe

physi
al meaning to the individual mass aspe
t fun
tions de�ned above. (However,

even in su
h instan
es, these fun
tions are still useful diagnosti
s.) Most impor-

tantly, where the supports of the �elds do overlap, and only in these regions, it is

possible for mass-energy to be ex
hanged from one s
alar �eld to the other|through

the gravitational �eld|while the sumM

C

+M

R

=M (measured in an exterior va
-

uum region) is 
onserved. The quantities given above allow us to measure this

ex
hange of mass by looking at the pro�les M

C

(t; r) and M

R

(t; r) before and after

a time when the �elds are intera
ting. This is shown in the next se
tion.

As a further 
onsideration, we point out that the U(1) symmetry of the


omplex �eld implies that there is a 
onserved Noether 
urrent, J

�

, given by

J

�

=

i

8�

g

��

(��

�

�

�

� �

�

�

�

�): (3.22)

The 
orresponding 
onserved 
harge or \parti
le number" N is

N =

Z

1

0

r

2

p

�gJ

t

:

We may also wish to regard N as a fun
tion of t and r by integrating the above

fun
tion from zero to some �nite radius, in whi
h 
ase

�N(t; r)

�r

= r

2

(�

1

�

2

��

2

�

1

) : (3.23)

Some authors have 
onsidered the di�eren
eM

C

�mN to be a sort of \bind-

ing energy" of the 
omplex �eld [61℄, however this quantity does not 
orrespond to

any transition in the stability of boson stars, and we have not found it to be very

useful in understanding the dynami
s of our simulations.

Finally, following Seidel and Suen [89℄, we de�ne a radius R

95

(t; r) for the

boson star impli
itly byM

C

j

R

95

= 0:95M

C

j

r!1

. Alternatively, we will also 
onsider

a radius R

63

(t; r) whi
h en
loses (1�e

�1

) � 63% ofM

C

j

r!1

, and whi
h will in
lude

the \bulk" of a boson star but will negle
t the \tail".
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3.3 Simulation Results

We 
hoose the initial data for the 
omplex �eld to be a boson star at the origin,

with a given 
entral density �

0

(0). For the massless �eld �

3

(0; r), we 
hoose one of

the families in Table 3.1. We generate 
riti
al solutions by tuning the amplitude A

of �

3

(0; r) (holding the position r

0

and width � 
onstant) using a bise
tion sear
h,

until the resulting solution is arbitrarily 
lose (i.e. within some spe
i�ed pre
ision)

to the point of unstable equilibrium between dispersal and bla
k hole formation.

Figure 3.1 shows a series of snapshots from a typi
al simulation in whi
h the

parameter p (p � A), is slightly below the 
riti
al value p

?

, for a boson star on

the stable bran
h with a mass of M = 0:59M

2

P l

=m, where M

P l

is the Plan
k mass.

(The boson mass m has units of inverse length, so the 
orresponding physi
al mass

is m�h=
, and we use �h = 1.) The shell of massless �eld, a member of initial data

Family I, implodes through the boson star and explodes ba
k out from the origin,

and the gravitational intera
tion between the �elds for
es the boson star into a new

state, a \
riti
al solution." We see from this animation, and from Figure 3, that

dispersal from the 
riti
al state does not mean that the boson star returns to its

original stable 
on�guration, but rather that the star be
omes strongly disrupted

and \explodes." That is to say, if we were to follow the evolution beyond t = 475,

the massive �eld would 
ontinue to spread toward spatial in�nity. At some late

time, after a large amount of s
alar radiation has been emitted, the end state would

probably be a stable boson star with very low mass.

The gravitational intera
tion between the two �elds results in an ex
hange of

energy from the massless �eld to the massive �eld, as shown in Figure 3.2. Figure 3.3

shows some timelike sli
es through the simulation data, giving a plot of the maximum

value of a, the value of j�j at the origin, and the radius R

95

as fun
tions of time.

These are given to help elu
idate the point that the 
riti
al solution os
illates about

some lo
al equilibrium, before dispersing or forming a bla
k hole. The lifetime of
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Figure 3.1: Evolution of a perturbed boson star with �

0

(0) = 0:04 �

p

4� and

mass M

C

= 0:59M

2

P l

=m. This shows 
ontributions to �M=�r due to the massive

�eld (solid line) and massless �eld (dashed line). We start with a stable boson star


entered at the origin, and a pulse of massless �eld given by Family I with r

0

= 30

and � = 8. (We see two peaks in dM=dr of the massless �eld be
ause it is only the

gradients of �

3

, not �

3

itself, whi
h 
ontribute to M

R

(r; t).) In the evolution shown

above, the pulse of massless �eld enters the region 
ontaining the bulk of the boson

star (t ' 15), implodes through the origin (t ' 30) and leaves the region of the

boson star (t ' 50). Shortly after the massless pulse passes through the origin, the

boson star 
ollapses into a more 
ompa
t 
on�guration, about whi
h it os
illates for

a long time before either forming a bla
k hole or dispersing. (The 
ase of dispersal

is shown here.) Note that the perturbing �eld �

3

passes through the boson star and

exits the region 
ontaining most of the star, even before the massive �eld rea
hes its

denser, 
riti
al state. Thus the massless �eld is not part of the 
riti
al solution per

se. Bla
k hole formation (always with a �nite bla
k hole ADM mass in our study)


an take pla
e at times long after the massless pulse has left the neighborhood of

the boson star.
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Table 3.1: Families of initial data. For both families, the initial data, �(0; r) =

�

1

(0; r)+i�

2

(0; r), for the massive 
omplex �eld is given by a boson star, obtained by

solving (3.11){(3.13) numeri
ally a

ording to the ansatz (3.16) (with the parameter

! found via \shooting"). The initial real massless �eld pro�le, �

3

(0; r), is given in


losed form by the \gaussian" and \kink" initial data. For ea
h family, we also


hoose �

t

�

3

(0; r) su
h that the pulse is initially in-going, �.e. �

3

(0; r) = �

3

(0; r) +

�

3

(0; r)=r.

Family Complex Field �

1

+ i�

2

Real Field �

3

Name Parameters Pro�le Name Parameters Pro�le

I Boson Star �

0

(0) �

0

(r) Gaussian A; r

0

;� A exp

 

�

�

r � r

0

�

�

2

!

I I Boson Star �

0

(0) �

0

(r) Kink A; r

0

;�

A

2

�

1 + tanh

�

r � r

0

�

��

the 
riti
al solution in
reases monotoni
ally as p ! p

?

. Figure 3.4 shows that the

s
aling law expe
ted for Type I transitions is exhibited by these solutions.

Figure 3.5 shows the mass vs. radius for some 
riti
al solutions along with

the equilibrium 
urve for boson stars. We noti
e that there are great similarities, at

least for relatively high mass 
on�gurations, between the 
riti
al solutions and un-

stable boson stars in the ground state. (We do not perform studies involving boson

stars with mu
h lower masses, be
ause of the dynami
 range required for the spatial

resolution of the �nite di�eren
e 
ode. Also, for a given jp � p

?

j, su
h low-mass


riti
al solutions have mu
h shorter lifetimes than larger-mass solutions; thus it 
an

be more diÆ
ult to measure time-averaged properties.) When we in
lude nearly

all of the 
omplex-s
alar mass in our 
omparisons, as shown in Figure 3.5(a), we

see that the time-averaged properties of the 
riti
al solutions with lower masses, i.e.

those further from the transition to instability, deviate from the 
urve of equilibrium


on�gurations, and that the deviation in
reases as mass de
reases. When we 
on-

sider only the bulk of the boson star, however, we see very good agreement between

the dynami
ally generated 
riti
al solutions and the unstable boson stars, 
omputed

from the stati
 ansatz, as shown in Figure 3.5(b). The 
omparison between low-mass
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Figure 3.2: Ex
hange of energy between the real and 
omplex s
alar �elds. For this

simulation, initial data from Family I was used, with �

0

(0) = 0:04 �

p

4�, r

0

= 40

and � = 8. The solid line shows the mass of the 
omplex �eld, shifted upward on

the graph by 0:21M

2

P l

=m. The long-dashed line shows the mass of the real �eld,

shifted upward by 0:55M

2

P l

=m. The mass �M ex
hanged from the massless �eld

to the massive �eld in this simulation is nearly 0.0053, or about 2.5% of the mass

of the real �eld (9% of the boson star mass). The amount (and per
entage) of

mass transfer goes to zero as we 
onsider boson star initial data approa
hing the

transition to instability (see, e.g. Figure 7). The dotted line near the top of the

graph shows the total mass en
losed within r = 100. Throughout the simulation,

both the total mass M = M

C

+M

R

and the parti
le number N (of the 
omplex

�eld) are 
onserved to within a few hundredths of a per
ent.
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Figure 3.3: Quantities des
ribing a near-
riti
al solution. Here we show timelike

sli
es through the data shown in Figure 3.1, an evolution that ends in dispersal.

Top: Maximum value of the metri
 fun
tion a (for ea
h spa
elike hypersurfa
e

parameterized by t). The lo
al maximum at t ' 40 is due to the presen
e of the

pulse of massless �eld. Middle: Central value j�(t; 0)j of the massive �eld. Bottom:

Radius R

95

whi
h 
ontains 95% of the mass-energy in the 
omplex �eld. Again,

we see eviden
e that after the remaining in 
riti
al regime for a while, the star 
an

\explode", leaving a di�use remnant with low mass.
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Figure 3.4: Lifetime � of a typi
al set of near-
riti
al solutions vs. ln jp � p

?

j. We

use initial data from Family I. The lifetime of the 
riti
al solution obeys a simple

s
aling relation. Using super-
riti
al solutions, we measure � to be the time from

t = 0 until bla
k hole formation o

urs. The relationship shown in the graph 
an

be des
ribed by � = �
 ln jp� p

?

j, where for the data shown in this graph, 
 ' 9:2

The value of 
 
an be related to the imaginary part of the Lyapunov exponent �

of the unstable mode (� e

i�t

) by =(�) = 1=
 ' 0:109: This value is the same as

that obtained from a linear perturbation analysis of the spe
i�
 boson star to whi
h

we believe this 
on�guration is asymptoting (See Se
tion 3.5). We note that in the

limit p! p

?

, the mass of the bla
k hole formed is �nite (and 
lose to the mass of the

progenitive unstable boson star), i.e. the system exhibits Type I 
riti
al behavior.
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Figure 3.5: Mass vs. radius for equilibrium 
on�gurations of boson stars (solid line),

initial data for the 
omplex �eld (triangles), and 
riti
al solutions (squares). Arrows

are given to help mat
h initial data with the resulting 
riti
al solutions. Points on

the solid line to the left of the maximum mass M

max

' 0:633M

2

P l

=m 
orrespond

to unstable boson stars, whereas those to the right of the maximum 
orrespond to

stable stars. If one takes time averages of properties su
h as mass, 
entral density

j�(t; 0)j and radius R

95

during the 
riti
al regime, one �nds values whi
h mat
h the

pro�le of a boson star on the unstable bran
h. The squares show the time average of

ea
h 
riti
al solution during the os
illatory phase. Graph (a) shows mass M versus

R

95

the radius 
ontaining 95% of M , whereas graph (b) shows M versus the radius


ontaining (1 � e

�1

)M . The agreement between the 
riti
al solutions and boson

stars shown in graph (a) deteriorates with de
reasing mass, however the 
omparison

shown in graph (b), whi
h negle
ts the \tail" of the 
riti
al solutions and boson

stars, shows mu
h better agreement for all masses. (We show the tail region in

Figure 3.6.) In this simulation the massive �eld radiates only a small amount due

to the perturbation by the massless �eld, and so the stable boson star is essentially

driven to \pop" a
ross the stability 
urve by the impinging massless pulse.

44




riti
al solutions and boson stars, shown in Figure 3.5, 
an be further illuminated

by looking at a pro�le of the mass distribution as shown in Figure 3.6.

We see that there is a small halo near the outer edge of the solution (r = 8),

and it is this whi
h throws o� our measurement of R

95

used for Figure 3.5. Despite

the e�e
t this has on the measurement of the radius R

95

of the star, we 
an still

obtain a good �t of a boson star to the interior of the 
riti
al solution in the low-mass

regime. We provide further dis
ussion of these halos in Se
tion 3.6.

It is also worth noting that the 
riti
al solution best 
orresponds to a boson

star in the \ground state", i.e. a solution without any nodes in the distribution

of the �elds �

1

or �

2

. Boson stars in ex
ited states (i.e., having nodes in �

1

and

�

2

) have mass distributions whi
h di�er signi�
antly from the 
riti
al solutions we

obtain [9℄.

We wish to explain these simulation results in terms of the quasi-normal

modes of boson stars. Previous work in 
riti
al phenomena [15, 24, 30, 38, 45, 46,

64, 74℄ leads us to surmise that there is a single unstable mode present in the system

whi
h is ex
ited when the boson star moves into the 
riti
al regime. The os
illatory

behavior during the 
riti
al regime may be explainable in terms of the superposition

of a stable os
illatory mode with the unstable mode. In the next se
tion, we attempt

to 
on�rm these hypotheses by means of perturbation theory.

3.4 Boson Star Stability Study via Linear Perturbation

Theory

We follow the work of Gleiser and Watkins [43℄. For the perturbation 
al
ulations,

we �nd it helpful to de�ne the following metri
 fun
tions:

e

�(t;r)

� �

2

e

�(t;r)

� a

2
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Figure 3.6: Comparison of highly unstable (low-mass) 
riti
al solution and boson

star. Squares show a 
riti
al solution resulting from a boson star having �

0

(0) =

0:26 �

p

4�: (The data has been redu
ed for graphing purposes; the a
tual spatial

resolution in the simulation is four times �ner than that shown in the �gure.) The

solid line shows a \best �t" (unstable) boson star we 
onstru
ted by �nding the time

average of j�(t; 0)j in the 
riti
al solution and using this as the value for �

0

(0) in

the ODE integration routine whi
h solves for the equilibrium (boson star) solutions.

We see that there is a small halo near the outer edge of the solution (r = 8). The

halo has the same relative magnitude when viewed in terms of the parti
le number

distribution �N=�r. We dis
uss the halo phenomena further in Se
tion 3.6.
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and to rewrite the 
omplex �eld �(t; r) as

�(t; r) = [ 

1

(t; r) + i 

2

(t; r)℄e

�i!t

; (3.24)

where  

1

and  

2

are real. (Note that this is a di�erent de
omposition of the �eld �

than (3.7), the one used in the previous se
tions.)

In these variables, the equilibrium quantities are

�(t; r) = �

0

(r) (3.25)

�(t; r) = �

0

(r) (3.26)

 

1

(t; r) = �

0

(r) (3.27)

 

2

(t; r) = 0: (3.28)

For the perturbation, we expand about the equilibrium quantities by �rst

introdu
ing four perturbation �elds|Æ�(t; r), Æ�(t; r), Æ 

1

(t; r) and Æ 

2

(t; r)|and

then setting:

�(t; r) = �

0

(r) + Æ�(t; r) (3.29)

�(t; r) = �

0

(r) + Æ�(t; r) (3.30)

 

1

(t; r) = �

0

(r)(1 + Æ 

1

(t; r)) (3.31)

 

2

(t; r) = �

0

(r)Æ 

2

(t; r): (3.32)

These expressions are substituted into the relevant evolution and 
onstraint

equations (details in Appendix C), after whi
h the resulting system 
an be redu
ed

to the following system of two 
oupled se
ond-order ordinary di�erential equations

for Æ�

1

and Æ�:

Æ 

00

1

= �

�

2

r

+

�

0

0

� �

0

0

2

�

Æ 

0

1

�

Æ�

0

r�

2

0

+ e

�

0

��

0

Æ

�

 

1

�

"

�

0

0

�

0

�

�

0

0

� �

0

0

2

+

1

r

�

+

�

�

0

0

�

0

�

2

+

1� r�

0

0

r

2

�

2

0

+ e

�

0

��

0

!

2

� e

�

0

#

Æ�
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+ 2e

�

0

"

1 + e

��

0

!

2

+ e

��

0

�

�

0

0

�

0

�

2

+ r�

0

�

0

0

#

Æ 

1

(3.33)

Æ�

00

= �

3

2

(�

0

0

� �

0

0

)Æ�

0

+

"

4�

02

0

+ �

00

0

+

2

r

2

�

(�

0

0

� �

0

0

)

2

2

�

2�

0

0

+ �

0

0

r

#

Æ�+ e

�

0

��

0

Æ

�

�

� 4(2�

0

�

0

0

� re

�

0

�

2

0

)Æ 

0

1

� 4

�

2�

02

0

� re

�

0

�

2

0

�

2

�

0

0

�

0

+

2�

0

0

+ �

0

0

2

��

Æ 

1

: (3.34)

To perform the stability analysis (normal-mode analysis), we assume a har-

moni
 time dependen
e, i.e.,

Æ 

1

(t; r) = Æ 

1

(r) e

i�t

Æ�(t; r) = Æ�(r) e

i�t

:

Note that (3.33) and (3.34) 
ontain only se
ond derivatives with respe
t to time,

and be
ause there are good reasons to assume �

2

is purely real [61, 43℄, we only need

to determine whether �

2

is positive or negative to determine stability or instability,

respe
tively.

Using the method des
ribed in Appendix C, we �nd the distribution for the

squared frequen
y �

2

0

of the fundamental mode, with respe
t to �

0

, whi
h is shown

in Figure 3.7.

Superposed with the fundamental mode, we may have other modes at higher

frequen
ies. Figure 3.8 shows the relation between �rst harmoni
 frequen
ies and

�

0

(0).

3.5 Comparison of Perturbation Analysis and Simula-

tion Data

We wish to 
ompare the results of our perturbation theory 
al
ulation with the

os
illations of stable boson stars. Two di�eren
es exist between the 
onventions used

in the perturbation theory 
al
ulation and those used in the boson star simulation
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Figure 3.7: Mode frequen
ies of boson stars: fundamental mode. This plot shows

a graph of �

2

0

, the squared frequen
y of the fundamental mode, versus the value of

�

0

at the origin. Note that, as the inset shows, �

2

0


rosses zero when �

0

(0) ' 0:27,

whi
h 
orresponds to a boson star with the maximum possible mass. (The 
ir
les

show a
tual values obtained, and the solid line simply 
onne
ts these points.)
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Figure 3.8: Mode frequen
ies of boson stars: �rst harmoni
 mode. This plot shows

a graph of �

2

1

, the squared frequen
y of the �rst harmoni
 mode, versus the value of

�

0

at the origin. Note that, as the inset shows, �

2

1


rosses zero when �

0

(0) ' 1:15,

whi
h 
orresponds to the �rst lo
al minimum on the unstable bran
h of the mass

vs. radius 
urve (see Figure 3.5). (The 
ir
les show a
tual values obtained, and the

solid line simply 
onne
ts these points.)
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data. The �rst di�eren
e is in the 
hoi
e of the time 
oordinate. In the perturbation

theory 
ode, we 
hoose a lapse of unity at the origin, whereas in the simulations we

set the lapse to unity at spatial in�nity. Thus we have the following mapping from

the perturbation theory 
al
ulations to the simulations:

�

2

�

�

�

Perturbative

!

�

2

�

2

�

�

�

Simulation

The other signi�
ant di�eren
e is in the way the 
omplex �eld �(t; r) is

de
omposed into 
onstituent real �elds. Thus we 
annot dire
tly 
ompare �

1

and

 

1

, for example. We 
an, however, 
ompare the modulus j�j of the �eld. For the

simulation data, the perturbation in j�j 
an be taken dire
tly from (�

2

1

+�

2

2

)

1=2

. For

the data obtained from perturbation theory, the perturbation in j�j will be, to �rst

order, �

0

Æ 

1

.

Before pro
eeding to the 
omparisons per se, we wish to point out that

determining the unstable mode via numeri
al simulation of the full nonlinear system

was very easy to do in 
omparison to the linear perturbation theory 
al
ulations.

3.5.1 Modes of Stable Boson Stars

We provide this subse
tion as a \warm-up" for the 
omparison of 
riti
al solutions

and unstable boson stars. Consider the simulation data for whi
h initially �

0

(0) =

0:05�

p

4�. The boson star os
illates about a point of stable equilibrium. We take

data from this equilibrium state and subtra
t it from the data at all times of the

simulation, in order to extra
t the os
illatory mode. In the simulation, we �nd a

period (in �(0)) of about T = (968:75 � 109:38; t)=4 = 214:8425. The os
illation

frequen
y is given by � = 2�=T , from whi
h we �nd �

2

= 8:553017 � 10

�4

. The

average value of 1=�(t; 0)

2

during this interval is h1=�

2

i = 1:6281. Thus the squared

os
illation frequen
y to 
ompare with the perturbation theory results is �

2

=�

2

=

0:00139:
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We 
hoose simulation data at a lo
al maximum in the os
illation 
y
le to


ompare with the perturbation theory results. At this time, the amplitude of the

os
illation is �j�(t; 0)j = 5:592091 � 10

�4

: From the perturbation theory 
ode, we

�nd the proper solution is obtained using �

2

' 0:00140 and Æ�

00

(0) ' 2:5 � 10

�4

.

Thus the square of the os
illation frequen
y obtained from the simulation is in

agreement with the value of ' 0:0014 obtained from the simulations.

We 
an graph the fun
tions obtained and �nd good agreement between the

simulation data and perturbation theory, as shown in Figures 3.9 and 3.10.

3.5.2 Unstable modes

To measure the unstable mode, we again perform a series of simulations in whi
h we

allow a gaussian pulse from an addition real, massless Klein-Gordon �eld to impinge

on a stable boson star.

By tuning the amplitude of this pulse (holding 
onstant the width of the pulse

and its initial distan
e from the boson star), we 
an generate a family of slightly

di�erent near-
riti
al solutions depending on the amplitude of the initial gaussian

pulse, and 
an tune down the initial magnitude of the unstable mode. By subtra
ting

these slightly di�erent near-
riti
al solutions, we obtain a dire
t measurement of the

unstable mode.

Considering a spe
i�
 example, we start with a stable boson star whi
h has

an initial �eld value at the origin of �

0

(0) = 0:04�

p

4�. By driving it with a gaussian

pulse tuned to ma
hine pre
ision, we 
an 
ause this stable star to be
ome a 
riti
al

solution whi
h persists for very long times, os
illating about a lo
al equilibrium.

The average value of j�(t; 0)j is hj�(t; 0)ji ' 0:463. We measure the unstable mode

by subtra
ting data of a run whi
h 
ontained a gaussian pulse with an amplitude

that di�ered by 10

�14

from that of the pulse tuned to ma
hine pre
ision. We 
an

then measure the growth fa
tor of the unstable mode by taking the L

2

norm of this
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Figure 3.9: Fundamental mode of stable boson star. The dashed (red) line shows

�

0

Æ 

1

from the perturbation theory 
al
ulations. To obtain the solid (green) line,

we took the simulation data and subtra
ted the Klein-Gordon �eld at one instant of

time from the data at another instant. We see that, to the eye, the two graphs are

indistinguishable. When we begin the dis
ussion of unstable modes, we will show

the di�eren
es between perturbation theory and simulation results.
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Figure 3.10: Fundamental mode of stable boson star. Perturbation in metri
 fun
-

tion a. The dashed (red) line shows the perturbation to the metri
 fun
tion a as

found via perturbation theory 
al
ulations. To obtain the solid (green) line, we took

the simulation data and subtra
ted the metri
 fun
tion a at one instant of time from

the data at another instant.
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di�eren
e at various times, taking the logarithm, and �tting a straight line to it.

From this, we obtain � ' 0:109 i, or �

2

' �0:0118. Be
ause of the di�eren
es in time


oordinate between the simulations and perturbation theory 
al
ulations, we need to


ompute �

2

=�

2

in order to 
ompare with the perturbation 
al
ulations. We �nd the

average value of 1=�(t; 0)

2

for the times listed above to be h1=�(t; 0)

2

i ' 3:80, and

thus we �nd �

2

=�

2

' �0:0450: We 
hoose to 
ompare these perturbation theory

results with data from a time in the simulation for whi
h the di�eren
e in �eld

values (for the two evolutions tuned slightly di�erently) is �j�(t; 0)j ' 8:4� 10

�13

.

We use this value in the perturbation theory solver and arrive at �

2

' �0:045, in

good agreement with the value from the simulation. In Figures 3.11 and 3.12, we


ompare the graphs of the solutions for the unstable mode. In Figure 3.13 we show

a 
omparison of the squared frequen
y values obtained from the linear perturbative

analysis and those as measured in our simulations.

3.5.3 Os
illatory modes

We 
an also look at the os
illatory mode during the 
riti
al regime. We study

the behavior of su
h a mode using the same te
hnique we used to examine the

fundamental mode of the unstable boson star: we subtra
t the data at one instant

of time from the data at all other instants. Again, as a spe
i�
 example, we use

the same initial boson star as that used in the previous se
tion. During the 
riti
al

portion of the evolution, we noti
e an os
illation period of about T ' 38:4, and thus

we obtain � = 2�=T ' 0:0261: During this period, the average value of 1=�

2

(t; 0) is

about 3:80, and thus we �nd �

2

=�

2

' 0:102: We take data from a moment in the

middle of the os
illation period, and subtra
t it from the data at other times. We


an then 
ompare the perturbation theory results with simulation data at a lo
al

peak of the os
illation. For the lo
al peak we 
hose at time t = t

p

, the di�eren
e

in the modulus of the �eld was �j�

(

t

p

; 0)j ' 0:0197. Inserting this value into the
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Figure 3.11: Fundamental mode of unstable boson star. (a) The solid line shows

�

0

Æ 

1

from the perturbation theory 
al
ulations. The squares shows the di�eren
e

between j�j for two simulations for whi
h the 
riti
al parameter p di�ers by 10

�14

.

(The data has been redu
ed for graphing purposes; the a
tual spatial resolution in

the simulation is four times �ner than what is shown in the �gure.) Di�eren
es

between the simulation data and perturbation theory results are below 1:1� 10

�15

.

If a line were drawn 
onne
ting the squares, it would be indistinguishable, to the

eye, from the perturbation theory line. Thus we provide a se
ond graph (b) showing

the di�eren
e of these results, where the s
ale is relative to the maximum value of

Æj�j.
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Figure 3.12: Fundamental mode of unstable boson star. (a) The solid line shows

the perturbation to the metri
 fun
tion a, as found from the perturbation theory


al
ulations. The squares shows the di�eren
e between the metri
 fun
tion a for two

simulations for whi
h the 
riti
al parameter p di�ers by 10

�14

. (In the simulations,

the spatial resolution was four times that shown in the �gure.) (b) A plot of the

di�eren
e between the mode obtained from the simulation and the mode obtained

via perturbation theory, where the s
ale is relative to the maximum value of Æa.
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Figure 3.13: Comparison of squared frequen
ies/Lyapunov exponents for unstable

modes. The 
ir
les show a subset of the perturbation theory data as displayed

in Figure 3.7. The squares show the measurements obtained from our simulations.

(The solid line simply 
onne
ts the 
ir
les.) We note that the agreement between the

two sets is good even for the more unstable, low-mass solutions. We also point out

that the measurements of our simulations were performed along r = 0, i.e., in the

interior of the halo found in the low-mass solutions, whi
h seems to strengthen the

remarks at the end of Se
tion 3.3, namely that, aside from the halo at the exterior

of the 
riti
al solution, the 
riti
al solutions (of all masses) seem to 
orrespond to

unstable boson stars.
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perturbation theory 
ode, we �nd �

2

' 0:102 for this 
on�guration. Thus we again

�nd ex
ellent agreement between the squared os
illation frequen
ies 
omputed in

perturbation theory and via simulation.

In Figures 3.14 and 3.15, we 
ompare the fun
tions obtained from the per-

turbation theory 
al
ulation with those from the simulation. We note that the

agreement for the metri
 fun
tions is very good for all radii, but the agreement in

the �elds begins to de
line beyond r = 5. Why do the graphs of j�j not agree well

for the �rst harmoni
? This 
ould be a 
onsequen
e of our simplisti
 method of

extra
ting this mode. While our method of simply subtra
ting di�erent frames has

worked well for our test 
ases of os
illations of stable boson stars, the �rst harmoni


of the unstable star has a higher frequen
y and thus our graph 
ould be subje
t

to sampling e�e
ts. A better method would be to perform a Fourier transform in

time for ea
h grid point, and 
onstru
t the higher harmoni
s in the �eld a

ordingly.

Given the strength of the agreement in the graphs of the metri
, our analysis does

seem to indi
ate that the os
illations observed for this data in fa
t 
orrespond to

the �rst harmoni
 quasinormal mode of a boson star, however the analysis of the

matter �eld needs further attention.

Finally, we must remark that we have been unable, using the fundamental

and �rst harmoni
 modes of an unstable boson star, to 
onstru
t a solution possess-

ing a halo similar to that shown in Figure 3.6. We do not expe
t higher modes to

be of any use here, be
ause the halo is observed to os
illate with the same (single)

frequen
y as the rest of the star. Sin
e, as we des
ribed at the end of Se
tion 3.3,

the halo seems to be radiated away over time, we might not expe
t it to be des
ribed

by the quasinormal modes (whi
h 
onserve parti
le number) we have 
onstru
ted.
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Figure 3.14: First harmoni
 of an unstable boson star. (a) The solid line shows

�

0

Æ 

1

from the perturbation theory 
al
ulations. To obtain the squares, we took

the simulation data and subtra
ted the Klein-Gordon �eld at one instant of time

from the data at another instant. (The data in the simulations had a spatial res-

olution four times �ner than what is shown in the �gure.) (b) The squares show

the di�eren
e between mode obtained from simulation and the mode obtained via

perturbation theory, s
aled relative to the maximum value of Æj�j. As we des
ribe

in the text, the la
k of agreement beyond r ' 6 may be an artifa
t of simplisti
 data

analysis. The next �gure shows that the metri
 quantities, whi
h depend dire
tly

on the matter distribution (and thus on j�j), show a favorable 
omparison between

the simulations and perturbation theory.
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Figure 3.15: First harmoni
 of an unstable boson star. (a) The solid line shows

the perturbation to a as found from perturbative 
al
ulations. To plot the squares,

we took the simulation data and subtra
ted the metri
 fun
tion a at one instant

of time from the data at another instant. (The spatial resolution in the simulation

was four times �ner than what is shown in the �gure.) (b) The squares show the

di�eren
e between the simulation data and the results of linear perturbation theory,

s
aled relative to the maximum value of Æa. The 
lose �t between these results

indi
ates that the os
illations observed in the 
riti
al solutions 
orrespond to stable

os
illatory modes in an unstable boson star.

61



3.6 Halos

We have strong eviden
e that the 
riti
al solutions 
orrespond to unstable boson

stars, but the prin
ipal point of disagreement is the existen
e of a \halo" of massive

�eld whi
h resides in the \tail" of the solution. It is our 
ontention that this halo is

not part of the true 
riti
al solution, but rather, is an artifa
t of the 
ollision with

the massless �eld.

In parti
ular, the halo seems to be a remnant of the original (stable) boson

star whi
h is not indu
ed to 
ollapse with the rest of the star to form the true


riti
al solution. We �nd that su
h a halo is observable in nearly all but the most

massive (least unstable) 
riti
al solutions we have 
onsidered, and that its size tends

to in
rease as less massive (more unstable) solutions are generated. The fa
t that

the halo thus de
reases as we approa
h the turning point only makes sense|a stable

boson star very 
lose to the turning point needs very little in the way of a pertur-

bation from the massless �eld to be "popped" over to the unstable bran
h, and the

�nal, unstable 
on�guration, will, of 
ourse, be very 
lose to the initial state.

Additionally, we note that in all 
ases we have examined, the �eld 
omprising

the halo os
illates with nearly the same (single) frequen
y as the rest of the solution.

This indi
ates that the halo is not explainable in terms of additional higher-frequen
y

modes.

As one might expe
t, the properties of the halo are not universal, i.e. they

are quite dependent on the type of initial data used. In 
ontrast, the 
riti
al solu-

tion interior to the halo is largely independent of the form of the initial data. To

demonstrate this, we use two families of initial data, given by a \gaussian" of Family

I in Table 3.1 and a \kink" of Family I I. A series of snapshots from one su
h pair

of evolutions is shown in Figure 3.16. We �nd di�erent amounts of mass transferred

from the massless to the massive �eld for the kink and gaussian data, as shown in

Figure 3.17, yet the 
entral values of the �eld os
illate about nearly the same value
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at nearly the same frequen
y. Both 
al
ulations start with identi
al boson stars with

j�(0; 0)j = 0:04�

p

4�. In the 
riti
al regimes, this be
omes hj�(t; 0)ji = 0:130�

p

4�

for the solution obtained from the gaussian data, and hj�(t; 0)ji = 0:135 �

p

4� for

the kink data. As already noted, the os
illation periods are also quite similar, dif-

fering by about 3%, and the masses interior to the halo are also quite 
omparable.

In parti
ular, it seems quite remarkable that the di�eren
es in mass interior to the

halo for the two families are mu
h smaller than the mass transferred from the real

�eld in either 
ase.

If we 
onsider the inner edge of the halo to be where �j�j=�r = 0 at some

�nite radius (e.g., r ' 5 in Figure 3.6), and look at the data between r = 0 and the

inner edge of the halo, we �nd good agreement between this data and the pro�le of

a boson star. This 
an be seen in both Figures 3.6 and 3.18.

We suspe
t that the halo is radiated over time (via s
alar radiation, or \grav-

itational 
ooling" [91℄) for all 
riti
al solutions. We �nd, however, that the time s
ale

for radiation of the halo is 
omparable to the time s
ale for dispersal or bla
k hole

formation for ea
h (nearly) 
riti
al solution we 
onsider. Thus, while we see trends

whi
h indi
ate that the halo is indeed radiating, we are not able to demonstrate this


on
lusively for a variety of s
enarios. With higher numeri
al pre
ision, one might

be able to more �nely tune out the unstable mode, allowing more time to observe

the behavior of the halo before dispersal or bla
k hole formation o

ur.

3.7 Con
lusions

We have shown that it is possible to indu
e gravitational 
ollapse and, in parti
ular,

Type I 
riti
al phenomena in spheri
ally-symmetri
 boson stars in the ground state,

by means of \perturbations" resulting from gravitational intera
tion with an in-

going pulse from a massless real s
alar �eld. Through this intera
tion, energy is

transferred from the real to the 
omplex �eld, and 
omplex �eld is \driven" and
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Figure 3.16: Evolution of r

2

dM

C

=dr for for two di�erent sets of initial data. Both

sets 
ontain the same initial boson star, but the massless �eld �

3

for one set is

given by a \gaussian" of Family I (solid line) with r

0

= 30, and � = 8 whereas for

the other set �

3

is given by a \kink" of Family II (dashed line) with r

0

= 35 and

� = 3. The variable A is varied (independently for ea
h family) as the parameter

p to obtain the 
riti
al solution. (Note that after t ' 60, the massless �eld has


ompletely left the domain shown in the �gure.) We have multiplied dM

C

=dr by r

2

to highlight the dynami
s of the halo; thus the main body of the solution appears

to de
rease in size as it moves to lower values of r. The kink data produ
es a larger

and mu
h more dynami
al halo, but interior to the halo, the two 
riti
al solutions

mat
h 
losely | and also mat
h the pro�le of an unstable boson star. Thus, the

portion of the solution whi
h is \universal" 
orresponds to an unstable boson star.
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Figure 3.17: M

C

vs. time for the two evolutions shown in Figure 3.16. Mass

transfer from the real to the 
omplex �eld o

urs from t ' 30 to t ' 60, i.e. while

the supports of the �elds overlap. There is more mass transferred using the kink

data, and yet the mass falls o� rapidly. The mass of the kink data a
quires a value

very 
lose to the mass of the gaussian data, whi
h is itself de
reasing slowly with

time. We see that, beyond t ' 250, the di�eren
e in mass between the two solutions

is very small 
ompared with the amount of mass transferred from the real �eld.
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Figure 3.18: Mass vs. hj�(t; 0)ji, the time average of the 
entral value of the �eld

for equilibrium 
on�gurations of boson stars (solid line), initial data (triangles) and


riti
al solutions (open and �lled squares). Arrows are given to help mat
h initial

data with the 
orresponding 
riti
al solution. Points on the solid line to the left of

the maximum massM

max

' 0:633M

2

P l

=m 
orrespond to stable boson stars, whereas

those to the right of the maximum 
orrespond to unstable stars. The data is the

same as that used for Figure 3.5, with data from one further evolution added at the

bottom of the mass range. The open squares show the time average of the mass and

j�(t; 0)j of some 
riti
al solutions, and the �lled squares show the same quantities

evaluated between r = 0 and the inner edge of the halo, de�ned to be the point

where �j�j=�r = 0 for �nite r. The mass of the 
riti
al solution is in general greater

than the mass of the initial data, however the mass inside the halo of the 
riti
al

solution is less than the mass of the initial data.
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\squeezed" to form a 
riti
al solution. The massless �eld is not dire
tly involved in

the 
riti
al behavior observed in the 
omplex massive �eld; the 
riti
al solution itself

appears to 
orrespond to a boson star, whi
h, at any �nite distan
e from 
riti
ality

in parameter spa
e, exhibits a superposition of stable and unstable modes.

Spe
i�
ally, for initial data 
onsisting of a boson star with nearly the maxi-

mum possible mass of M

max

' 0:633M

2

pl

=m, the resulting 
riti
al solution os
illates

about a state whi
h has all the features of the 
orresponding unstable boson star in

the ground state, having the same mass as the initial star. This result is reminis
ent

of the study by Brady et al. [15℄, who found that the Type I 
riti
al solutions for

a real massive s
alar �eld 
orresponded to the os
illating soliton stars of Seidel and

Suen [89℄. For boson stars with a mass somewhat less than M

max

, e.g., 0:9M

max

or less, however, we �nd less than 
omplete agreement between the 
riti
al solution

and an unstable boson star of 
omparable mass. This is eviden
ed by the presen
e

of an additional spheri
al shell or \halo" of matter in the 
riti
al solution, lo
ated in

what would be the tail of the 
orresponding boson star. Interior to this halo, we �nd

that the 
riti
al solution 
ompares favorably with the pro�le of an unstable boson

star. Additionally, we have shown that the halo details depend on the spe
i�
s of

the perturbing massless �eld, and we 
onje
ture that, in the in�nite time limit, the

halo would be radiated away.

In order to extend the 
omparison between the 
riti
al solutions and boson

stars, we have veri�ed and applied the linear perturbation analysis presented by

Gleiser and Watkins [43℄, extending their work by providing an algorithm to obtain

modes with nonzero frequen
y. We have used this algorithm to give quantitative

distributions of mode frequen
y vs. 
entral density of the boson star for the �rst two

modes, as well as to solve for the modes to 
ompare with our simulation results. We

have found that the unstable mode in the 
riti
al solutions have the same growth rate

as the unstable mode of boson stars, and that the mode shapes also 
ompare quite
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favorably. We noted that the unstable mode of these boson stars was determined

mu
h more easily by solving the full nonlinear set of evolution equations, rather than

via linear perturbation theory. The os
illations observed in the 
riti
al solution also

indi
ated agreement with �rst harmoni
 mode obtained via perturbation theory,

however the os
illatory mode in j�j showed poor agreement at large radii, and awaits

more 
areful analysis.

Future work may in
lude simulations of the 
riti
al solutions of low mass

using higher numeri
al pre
ision to further tune away the initial amplitude of the

unstable mode, thus allowing more time to observe the the small halo (i.e., whether

it is in fa
t being radiated away). We would also hope to obtain better agreement

between simulation and perturbation theory for the �rst harmoni
 mode of the

�eld j�j, perhaps using a more sophisti
ated method of extra
ting modes from the

simulation. Another dire
tion worthy of note would be to begin the simulation with

a pulse of the 
omplex �eld (instead of spe
i�
ally a boson star) tune the height

of the pulse to �nd the 
riti
al solutions via interpolation, and then 
ompare the

resulting 
riti
al solutions with our results obtained by perturbing boson stars.

Finally, we �nd it worthwhile to investigate similar s
enarios for neutron

stars. While there have been studies regarding the explosion of neutron stars near

the minimum mass (e.g., [33℄, [96℄), we would like to see whether neutron stars of

non-minimal mass 
an be driven to explode via dispersal from a 
riti
al solution.

This may take the form of a neutron star approa
hing the onset of instability via

slow a

retion, or by being driven a
ross the stability graph via violent heating from

some other matter sour
e, in a manner similar to the perturbations of boson stars

we have 
onsidered in this 
hapter.
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Chapter 4

Multi-S
alar Stars

A 
lass of general relativisti
 solitons is 
onsidered in whi
h multiple real s
alar

�elds are expressed as Fourier 
osine series with arbitrary temporal phase di�eren
es

between the �elds. For the spe
ial 
ase of two s
alar �elds, a one-parameter family

of solutions is found spanning from os
illating soliton stars (relative phase Æ = 0)

to boson stars (Æ = ��=2). Numeri
al evolution of these solutions 
on�rms their

stability.

4.1 Introdu
tion

In 1991, Seidel and Suen [90℄ showed the existen
e of non-topologi
al solitons for a

matter model without an expli
it 
onserved Noether 
urrent: a minimally-
oupled

real-valued s
alar �eld. Calling these \os
illating soliton stars", they 
onstru
ted

these solutions for the 
ase of spheri
al symmetry by expanding the �eld and metri


variables as Fourier 
osine series, with expansion 
oeÆ
ients depending only on

radial position. They then demonstrated, via dire
t numeri
al evolution, that the

solutions obtained are stable and indeed persist with the required periodi
ity. In

this 
hapter, we present an extension of Seidel and Suen's work on os
illating soliton
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stars, in whi
h multiple s
alar �elds are 
onsidered.

The matter model we are interested in is that of n Klein-Gordon �elds with-

out self-intera
tion, minimally 
oupled to general relativity. Su
h a model has a

Lagrangian density given by

L = R

p

�g �

p

�g

2

n

X

i=1

�

�

i

;a

�

i

;a

�m

2

i

�

2

i

�

(4.1)

We work in spheri
al symmetry, using the \polar/areal" 
oordinate system

ds

2

= ��

2

(t; r)dt

2

+ a

2

(t; r)dr

2

+ r

2

d
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(4.2)

The 
omplete evolution of the �eld and metri
 is given in terms of the Klein-Gordon

equation and two 
onstraints from Einstein's equations. The equations 
an be writ-

ten as:
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where an overdot is used to denote �=�t and a prime to denote �=�r.
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We start by 
onsidering only one s
alar �eld, i.e. n = 1. We note that the

\sli
ing 
ondition" (4.4) and the \Hamiltonian 
onstraint" (4.5) are un
hanged if

we de
ompose � into two identi
al �elds (n = 2), �

1

and �

2

= �

1

, su
h that

� =

1

p

2

(�

1

+ �

2

) : (4.6)

Also, the Klein-Gordon equation (4.3) is un
hanged if we multiply � by a 
onstant.

(Thus we 
an absorb the fa
tors of 4�G in (4.4) and (4.5) by letting

p

4�G�! �.)

Sin
e a soliton solution 
orresponding to (4.3)-(4.5) is the os
illating soliton

star, we see that a trivial multi-s
alar soliton solution 
an be obtained by 
onstru
t-

ing an os
illating soliton star with a single �eld, as des
ribed in Seidel and Suen's

paper [90℄ and then performing the de
omposition (4.6).

On the other hand, if we wish to model a boson star, then we have one massive


omplex s
alar �eld

~

�, for whi
h the real and imaginary parts behave like two real-

valued s
alar �elds:

~

� = �

1

+ i�

2

. The boson star ansatz is

~

� =

^

�(r) exp(�i!t);

where

^

�(r) is real. This implies

�

1

=

^

�(r) 
os(!t)

�

2

=

^

�(r) 
os(!t+ Æ); (4.7)

where Æ = ��=2.

Comparing the soliton star and the boson star, we �nd that both solutions


an be obtained by using two real-valued s
alar �elds. For the soliton star, the �elds

will have equivalent radial and temporal dependen
e; whereas for the boson star,

the �elds have equivalent radial dependen
e, and the temporal dependen
e is the

same to within a phase.

4.2 Phase-Shifted Boson Stars

The work des
ribed in this 
hapter began in the midst of our numeri
al evolutions

of boson stars. The question arose, \What happens if we solve for the boson star
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initial data, then `manually' 
hange the phase relationship of the two �elds, keeping

their radial dependen
e un
hanged, and then, �nally, re-solve for the metri
 vari-

ables using the new matter 
on�guration?" For future referen
e, we term su
h a


on�guration a \phase-shifted boson star." This was in part motivated by a de-

sire to study os
illating soliton stars, and by our initial diÆ
ulty in 
onstru
ting

the proper initial data. Taking the boson star initial data and manually removing

the phase shift between the two �elds resulted in what might be termed a \poor

man's soliton star." Su
h a system demonstrates a stable, quasi-periodi
 behavior

as shown in Figure 4.1.

We then 
onsidered solutions in whi
h we again took the boson star initial

data

^

�(r) and distributed it to �

1

and �

2

using some di�erent value of Æ, su
h as

Æ = �=6. The evolution for su
h a system 
an be seen in Figure 4.2.

For ea
h of the many values of Æ we tried, we found an apparently stable

solution whi
h os
illated in some nearly periodi
 manner for very long times. These

results led Choptuik to 
onje
ture [28℄ that there may exist a 
ontinuous family of

periodi
 soliton-like solutions, parameterized by the phase Æ.

While our \phase-shifted boson stars" already 
onstitute su
h a family, we

wished to 
onstru
t periodi
 multi-s
alar solutions dire
tly via a periodi
 ansatz of

the form used by Seidel and Suen for their os
illating soliton stars.

4.3 Constru
ting Periodi
 Solutions

The method used for 
onstru
ting the solutions is a natural extension of that used

in [90℄. We expand the �elds and metri
 variables in the following manner:

�

i

(t; r) =

1

X

j=1

�

i;2j�1

(r) 
os[(2j � 1)!t+ Æ

i

℄ ; (4.8)
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Figure 4.1: Central value of the �elds �

1

(t; 0) = �

2

(t; 0) vs. time t, for the \poor

man's soliton star" obtained via solving for boson star initial data and altering �

2

by setting �

2

(0; r) = �

1

(0; r). One 
an see (e.g. near t = 800) that the solution is

not 
ompletely periodi
, but it is nevertheless long-lived. Stable evolutions of this

system have been obtained for t > 20000.
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Figure 4.2: Central value of the �elds �

1

(t; 0) = �

2

(t; 0) vs. time t, for the phase-

shifted boson star with Æ = �=6. Note the trade-o� of energy between the two

�elds.
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�

2

(t; r) = 1 + �

1;0

(r)

+

n

X

i=2

1

X

j=1

�

i;2j

(r) 
os[2j!t+ 2Æ

i

℄ ; (4.9)

a
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1;0

(r)

+

n

X

i=2

1

X

j=1

a

i;2j

(r) 
os[2j!t + 2Æ

i

℄ : (4.10)

We insert the above expressions into Eqs. (4.3)-(4.5), expanding the resulting

equations in terms of sines and 
osines, and obtain a set of ordinary di�erential

equations (ODEs) by requiring that the 
oeÆ
ients of a given Fourier mode sum

to zero. Regularity at r = 0 requires (�=�r)�

i;j

(0) = 0 as well as lo
al 
atness,

a

i;j

(0) = 0. Asymptoti
 
atness requires a

i;j

(r) and �

i;j

(r) go to zero suÆ
iently

rapidly as r ! 1. Sin
e the �

i;j

(r) are part of the lapse, and thus represents

freedom in 
hoosing a 
oordinate system, we require only that they asymptoti
ally

approa
h 
onstant values as r ! 1. The equations (4.3)-(4.5) along with the

above boundary 
onditions 
onstitute an eigenvalue or \shooting" problem. The

eigenvalues we shoot for are �

i;j

(0), given �

i;j

(0). (We 
hoose ! = 1 be
ause ! 
an

be absorbed into the 
hoi
e of the time 
oordinate, t! t=!, �! �!.) This would

ordinarily 
onstitute a multidimensional parameter spa
e sear
h for the eigenvalues

�

i;j

(0), however 
oordinate freedom allows us to redu
e the parameter spa
e to one

dimension by 
hoosing �

i�2;j

(0) = 0. This 
hoi
e has the additional bene�t of

allowing for a simple boundary 
ondition on the derivatives �

00

i;j

at r = 0, whi
h we

need in order to do the integration: Our 
hoi
e �

i�2;j

(0) = 0 means that the �

00

i;j

(0)


ompletely de
ouple from one another in Eq. (4.3) in the limit r! 0, and we obtain

the equation

�

00

i;j

(0) =

 

1

3

�

i;j

�

1;0

1 + �
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In pra
ti
e we must trun
ate the sums in (4.8)-(4.10) at some �nite maxi-

mum value of j, denoted by j

max

. The resulting system of equations is in general

underdetermined, but we solve only the 3nj

max

+ 4 equations 
orresponding to the

lowest modes, treating the other modes as higher order 
orre
tions whi
h we negle
t.

We now return to the previous example of boson stars and os
illating soliton

stars, both of whi
h we 
an obtain by setting n = 2 in the expansions (4.8)-(4.10),

and setting m

i

= m and all �

i;j

(r) for a given j equal to ea
h other, as in �

i;j

(r) =

^

�

j

(r). This has the e�e
t of making all �

i;j

(r) equal to the same �̂

j

(r) for a given j,

and similarly a

i;j

(r) = â

j

(r): We also set Æ

1

= 0 and de�ne Æ � Æ

2

. Both the soliton

star of [90℄ and the boson star require

^

�

j�3

(0) = 0. This means that the only free

parameters are

^

�

1

(0) and Æ, leaving �

1;0

as an eigenvalue for whi
h to shoot. Thus

by 
onstru
tion, for a given

^

�

1

(0), one will obtain a soliton star if one sets Æ = 0,

and a boson star for Æ = ��=2.

One wonders how well the trun
ated series expansion mat
hes the ideal so-

lution one would obtain given an in�nite number of modes. Clearly one would hope

that the series would 
onverge rapidly enough to justify taking only a few terms.

Figure 4.3 demonstrates the 
onvergen
e of the series (4.10) for di�erent values of

Æ, given j

max

= 2.

The relation between between total mass and radius of the star is shown

in Figure 4.4, for various values of Æ. The inset shows the relation between the

maximum mass of the star and the phase angle Æ.

We see that there exist great similarities between boson stars and os
illating

soliton stars, and that both are members of a larger family of two-s
alar solutions.

A question arises, however, regarding the stability of the general two-s
alar stars:

Do these 
on�gurations persist and maintain their periodi
ity in the fa
e of pertur-

bations? To answer this question, we opt for a numeri
al solution of Eqs.(4.3)-(4.5).
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Figure 4.3: Convergen
e of the multi-s
alar star series for the metri
 
oeÆ
ient

fun
tions g

i

, for four values of the phase shift Æ. The solid (red) line shows g

0

,

the short dashed (blue) line shows g

2

, and the long-dashed (green) line shows g

4

.

Thus the expansion seems to 
onverge rapidly. For a boson star (Æ = �=2), there

is only one os
illatory mode. For this 
ase, we �nd �

3

(r) ! 0 as Æ ! �=2, but

we do not �nd the higher-order 
oeÆ
ient fun
tions, e.g. g

2

(r), g

4

(r), vanishing

as Æ ! �=2. The total 
ontributions to the metri
 fun
tions a

2

and �

2

given by

(4.10) and (4.9) 
ontain the 
oeÆ
ient fun
tions multiplied by quantities whi
h go

as 
os(!t) + 
os(!t+ 2Æ), whi
h do go to zero as Æ ! �=2.
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Figure 4.4: Comparison of mass vs. radius for a family of two-s
alar stars parame-

terized by the temporal phase shift Æ. We see that boson stars (Æ = �=2) are similar

to os
illating soliton stars (Æ = 0) in terms of mass and radius.
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4.4 Numeri
al Evolution of the Solutions

We use the same numeri
al 
ode as used for the boson star study of Chapter 3.

Having obtained the initial data by integrating the ODEs des
ribed above, we de�ne

new variables

�

i

� �
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i

; �

i

�

a

�

_

�

i

(4.11)

In terms of these new variables, the relevant evolution equations are
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and we solve for the �elds �

i

and the metri
 variables by integrating along ea
h

spatial hypersurfa
e the equations �
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= �
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The boundary 
onditions at r = 0 are the same as those stated previously

with the ex
eption that we 
hoose the lapse � su
h that the 
oordinate t measures

proper time as r ! 1. As in Chapter 3, we use as an outer boundary 
ondition

the Sommerfeld 
ondition for a massless �eld. We ran our simulations with di�erent

values of 
omputational domain size r

max

, trying to test for any periodi
ity or other

e�e
ts that might be a fun
tion of the outer boundary, but we found the results

to be essentially independent of r

max

, even for times whi
h are large 
ompared to

the time for information to 
ross the grid (e.g. 0 � t � 2000 with r

max

� 50). We

attribute this to the fa
t that there is very little s
alar radiation from these 
ompa
t

obje
ts.
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4.5 Simulation of Multi-S
alar Stars

When we evolve the initial data, we �nd that the resulting solutions deviate sharply

from the periodi
 ansatz. This is shown in Figure 4.5. We are still investigating

the 
ause of this disagreement. We note, however, that the numeri
al solutions do

follow quasi-periodi
 evolutions over long time s
ales, further promoting the idea

that quasi-periodi
 two-s
alar solutions may be 
ommon.

4.6 Con
lusion

We have demonstrated the existen
e of at least one family of multi-s
alar solutions

we 
all \phase-shifted boson stars" whi
h are obtained by solving the ODEs asso
i-

ated with boson stars and then altering the phase between the real and imaginary

parts of the �eld. These solutions may not be stri
tly periodi
 or stri
tly stable, but

they are very long-lived and demonstrate periodi
ity over these long time s
ales.

Dire
t 
onstru
tion of stri
tly periodi
 solutions via a Fourier 
osine series similar

to that of Seidel and Suen [90℄ yields series whi
h 
onverge rapidly, and for a spe
ial

sub
lass produ
e a one-parameter family in the phase shift Æ, spanning os
illating

soliton stars at Æ = 0 to boson stars at Æ = �=2. For other values of Æ, we do

not �nd agreement between numeri
al evolution of the initial data and the periodi


ansatz, rather we �nd a di�erent quasi-periodi
, long-lived solution. The 
ause of

this alternate evolution is still under investigation.
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Figure 4.5: Results from evolution of a two-s
alar star for initial data with �

i

(0; 0) =

0:04, Æ = �=4, showing the maximum value of a on ea
h spa
elike hypersurfa
e

parameterized by t. Dashed lines show the \ideal" solution obtained by evaluating

(4.3)-(4.5) as a fun
tion of t. The solid lines show the results of simulation on the

domain 0 � r

max

� 75. We see that the simulation data di�ers markedly from the

periodi
 ansatz solution.

81



Chapter 5

Toward Automati
 Adaptive Mesh

Re�nement (AMR)

5.1 AMR In General

One of the most 
ommon te
hniques for obtaining approximate solutions to time-

dependent partial di�erential equations (PDEs) is the use of �nite di�eren
e te
h-

niques, in whi
h the spatial domain is dis
retized into a grid or mesh, and the partial

derivatives are repla
ed with algebrai
 relationships between neighboring (
losely-

spa
ed) grid points. The relative 
loseness of the grid points is 
alled the resolution,

and it is in general the 
ase that high resolution provides for high a

ura
y | that

is, good approximation to the underlying PDEs | but at the 
ost of a long time

for the 
omputation to be performed.

Adaptive Mesh Re�nement (AMR) is a 
lass of te
hniques whi
h involve

varying the resolution throughout the simulation domain, and whi
h, in prin
iple,

provide a given degree of a

ura
y in a shorter amount of time than that required

for the appli
ation of �nite di�eren
ing on a single, uniformly spa
ed mesh | what

we will 
all \unigrid" algorithms. In the dis
ussion to follow, we will mainly refer to
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methods whi
h have been developed for systems of hyperboli
 di�erential equations.

There is a host of literature and methods devoted to the solution of ellipti
 and

paraboli
 equations via adaptive mesh te
hniques, however we will not delve into

su
h matters here.

5.2 The Desire for `Adaptivity'

For any sophisti
ated simulation in whi
h a high level of a

ura
y is required, some

sort of adaptivity in the way the various physi
al quantities are represented on the

domain is desirable for two main reasons.

1. Computational Ne
essities. Any 
omputer system will have �nite re-

sour
es, and furthermore may 
harge the user a fee in proportion to the use of these

resour
es. If the user wants to run a unigrid simulation to generate a highly a

urate

representation of a physi
al system, he might desire a very large grid whi
h would

require storage allo
ation in ex
ess of what is available on many 
omputer systems,

and even if the program �t in memory, it may take months to run the simulation. A

user's goal would probably be to run a program whi
h produ
es the desired amount

of a

ura
y, exe
utes in a minimum amount of time, and 
onsumes a minimum of

the storage resour
es on the system. AMR minimizes storage requirements by only

pla
ing �nely-spa
ed grid points where they are needed, and when they are needed,

and also minimizes 
omputation time by minimizing the number of grid points (and

hen
e the number of pointwise operations).

2. Unanti
ipated Resolution Requirements. It is often the 
ase that the

resolution requirements of a simulation (for a �xed lo
al a

ura
y) may not be

known a priori. A unigrid 
ode in whi
h data evolve toward the formation of

unanti
ipated small-s
ale features may leave the user no re
ourse but to terminate

the exe
ution and re-run the simulation with a higher resolution, thereby wasting

time and other 
omputing resour
es. Thus it would be desirable to have an algorithm
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whi
h dynami
ally responds to the need to maintain a

ura
y in the simulation.

For several years, AMR has been an attra
tive idea for resear
hers in numer-

i
al relativity [70℄, yet the implementation of AMR s
hemes has pro
eeded rather

slowly from the pioneering work of Choptuik [23, 24℄. During the Binary Bla
k

Hole Grand Challenge proje
t, it was noted by Choptuik [21℄ that simulation 
odes

in numeri
al relativity have tended to be fairly homogeneous from a \high-level"

perspe
tive, in that nearly all the 
odes being developed at the time used low-order

(se
ond-order) �nite di�eren
e te
hniques on a single mesh, and had a basi
 stru
-

ture of the form [21℄

Read initial state

for NUM STEPS

for NUM UPDATES or until 
onvergen
e

Update(Grid Fun
tion(s)) ! Grid Fun
tion(s)

end for

end for

Write �nal state

Choptuik pointed out that most of labor in developing these sorts of simulation


odes goes into the 
onstru
tion of stable, a

urate updates. He promoted the idea

of using the AMR algorithm of Berger and Oliger (des
ribed below) as a way to

allow relativists to 
on
entrate on the development of stable unigrid 
odes for a

serial ar
hite
ture. The Berger and Oliger method would then allow for parallelism

and adaptivity to be provided automati
ally by the main program driver.

Berger and Oliger AMR, in General

The 1984 paper of Berger and Oliger [11℄ des
ribes an AMR algorithm in whi
h

the spatial domain is de
omposed into a 
olle
tion of uniform, re
tangular grids

of various degrees of resolution, pla
ed throughout the 
omputational domain at

arbitrary orientations relative to one another. These grids 
an (and do) overlap, i.e.

parts of di�erent grids may 
ontain the same subset of the domain. Ea
h uniform
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grid is evolved separately, with boundary information supplied by other grids or

physi
al boundary 
onditions. Be
ause the uniform grids are evolved separately, the

Berger and Oliger algorithm allows users to 
on
entrate on writing update routines

for unigrid appli
ations.

In this s
heme, we start with a single uniform grid we 
all the base grid,

whi
h 
overs the entire domain and does not 
hange throughout the simulation.

We pla
e other grids \on top of" the base grid (i.e. we de�ne new grids whi
h


over a subset of the spa
e 
overed by the base grid) whi
h have �ner resolution,

in order to resolve features in the simulation. We 
an pla
e other, �ner grids on

top of these grids as determined by the a

ura
y requirements of the 
ode. The


riterion that determines when and where new grids are needed is an approximation

of the lo
al solution error, obtained via Ri
hardson expansion. Re
all from Chapter

2 that, for suÆ
iently smooth fun
tions and for 
entered di�eren
e s
hemes, we 
an

expe
t the error to be given as an even power series in the mesh spa
ing h, where

the 
oeÆ
ient fun
tions in this series are independent of h and thus we 
an obtain

lo
al approximations to these error fun
tions by 
omparing data from two grids of

di�erent resolution. Berger and Oliger used the term \trun
ation error" to refer

to what we have 
alled \solution error", and thus in this 
hapter we will use their

terminology in order to maintain 
onsisten
y with related literature.

We begin on the base grid and integrate forward in time two steps. We also

start with the same initial data on a grid with twi
e the mesh spa
ing as the base

grid. Keeping the CFL fa
tor � � �t=�x the same as that used for the base grid,

we evolve this 
oarse grid one step forward in time. The di�eren
e between the

data on the 
oarse grid at this time and the data on the base grid (restri
ted to the


oarse grid lo
ations) gives a measure of the lo
al trun
ation error. Those lo
ations

in the spatial domain whi
h 
ontain trun
ation errors larger than some user-de�ned

threshold value are \
agged" as points where �ner resolution is needed.
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At this point there needs to be an algorithm for determining how the 
agged

points will be 
overed by �ner grids. Su
h an algorithm is 
alled a \
lustering

algorithm", be
ause by it we seek to 
luster the 
agged points into large regions

whi
h 
an be 
overed by �ner grids. Great 
are must be given to how this algorithm

will pla
e the new grids, in order that maximum 
omputational eÆ
ien
y be a
hieved

[12℄. Covering a wide distribution of 
agged points with only one or two large grids

may be simple and dire
t but will waste large amounts of time 
omputing data at

lo
ations whi
h do not require high resolution (perhaps defeating the very purpose

of using AMR). Too many small grids 
overing a 
olle
tion of points may mean high


ommuni
ation 
osts, as well as require extra regridding work in later iterations.

It is often helpful to de�ne a grid slightly larger than the region of those points

whi
h need the �ne resolution, su
h that the grid also 
overs nearby regions whi
h

may require re�nement in the near future. If this \bu�ering" is done e�e
tively, it

will mean fewer 
agged points in the future and thus less work for the 
lustering

algorithm at a later time. After the points have been appropriately 
lustered, new

grids are de�ned to 
over the points appropriately. We 
all this \regridding."

We do not perform the tasks of measuring trun
ation error, 
lustering and

regridding at every time step, but rather only at 
ertain intervals (e.g. every four

time steps), primarily be
ause these tasks take nontrivial time away from the a
tual

work of simulation. The assumption underlying this is that the features in the

simulation will not 
hange \too rapidly."

If the gridfun
tions begin to lose their smoothness properties, the Ri
hardson

expansion starts be
oming a poor measure of the trun
ation error, and a typi
al

result of this is the allo
ation of �ne grids whi
h 
over nearly the entire domain.

Sin
e this is an undesirable out
ome, we require that the numeri
al evolution s
heme

be dissipative in order to try to enfor
e smoothness in the gridfun
tions.
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5.3 AMR vs. Higher-Order Unigrid

While AMR is one means of providing high a

ura
y in short time, another route

whi
h some resear
hers have taken is to use �nite di�eren
e operators whi
h are

better approximations to the underlying partial derivatives. This is a
hieved by

extending the Taylor series expansion of these derivatives to higher order, and the

most 
ommon extension is to fourth order. While it 
an be rather diÆ
ult to


onstru
t su
h higher-order operators whi
h still yield a stable evolution, the payo�

provided by higher order s
hemes has been enough to lure some resear
hers to

implement su
h evolution 
odes [59℄. The payo� is in terms of the 
onvergen
e

behavior: For every doubling of the resolution in a se
ond-order a

urate 
ode, the

trun
ation error goes down by a fa
tor of 4, but for the same re�nement using a

fourth-order a

urate 
ode, the trun
ation error goes down by a fa
tor of 16. Thus

even fairly modest resolution 
an with fourth-order 
odes provide extremely a

urate

solutions for suÆ
iently smooth phenomena. It is even to be expe
ted in a variety

of s
enarios that higher-order unigrid will yield better results (i.e. faster results for

a desired a

ura
y) than (se
ond-order) AMR. If the AMR s
heme is only se
ond

order, it will have to extend to very high levels of re�nement to mat
h the results

from a well-resolved fourth-order unigrid 
ode.

Given this observation, and the diÆ
ulties involved with developing a sophis-

ti
ated AMR 
ode, some have asked the question, \Why should we use AMR when

fourth-order unigrid o�ers mu
h better 
onvergen
e?" An initial response stems from

the fa
t that adaptive methods are in some sense designed to resolve small features

in a simulation whi
h may not be easily predi
table from the initial data. AMR

provides the fun
tionality to tra
k and resolve small-s
ale phenomena whi
h might

never appear in a unigrid simulation. Higher-order unigrid 
an do an ex
ellent job

for smooth data, but it still 
annot resolve any features smaller than the (stati
)

mesh spa
ing.
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We should also point out that, given a suÆ
iently general AMR algorithm

in whi
h we 
an take unigrid implementations and use them more or less dire
tly

within the AMR 
ode, and assuming that one 
an 
onstru
t appropriate higher-order

interpolation operators for this AMR 
ode, then one should be able to in
orporate

any unigrid te
hnique within the AMR 
ode. Constru
ting the higher-order in-

terpolation operators may be nontrivial, and one might �nd 
hallenges along the

boundaries of �ne grids, but there is nothing in prin
iple to prevent the in
lusion

of higher-order te
hniques within the AMR algorithm. Thus the development of

high-order unigrid 
odes and AMR 
odes, while these may at present appear to be

disparate and 
ompeting e�orts, 
an in prin
iple work together to provide signi�
ant

in
reases in 
omputing power.

5.4 The Need for EÆ
ient Parallelization

Modern large-s
ale simulation pa
kages are typi
ally run on large-s
ale 
omputer

systems, whi
h in re
ent times has meant some form of parallel 
omputing model.

Current parallel 
omputing platforms 
an range from the distributed-memory-distributed-

pro
essing ar
hite
ture of a 
luster of PCs to a sophisti
ated distributed-shared-

memory system like the SGI Origin 2000. Parallel 
omputing is an ex
ellent way

for an appli
ation to gain enormous in
reases in speed, but only if that appli
ation

parallelizes well, i.e. that the overall 
omputation speed s
ales almost linearly with

the number of pro
essors.

Typi
al mesh-based simulations lend themselves well to \data-parallel 
om-

puting", for whi
h one performs domain-de
omposition or \partitioning" on the data

set and sends one pie
e of the data set to ea
h pro
essor. (For a distributed memory

system, the size of ea
h pie
e is then limited by the amount of memory available to

a pro
essor.) For unigrid appli
ations, this partitioning 
an be fairly simple or even

trivial, but for an adaptive 
omputation the partitioning 
an be highly-nontrivial,
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due to the need for even \load balan
ing" a
ross all pro
essors. This load balan
ing

is essential if the 
omputation speed is to s
ale with the number of pro
essors.

Partitioning and load balan
ing aside, a prin
ipal diÆ
ulty for parallel grid-

based simulations (adaptive or otherwise) lies in the need for di�erent pro
essors

to 
ommuni
ate with ea
h other. Typi
ally this is seen along the boundaries of

the individual subdomains being simulated on ea
h pro
essor. Communi
ation 
ost

s
ales not only with the topology of the grid, but also with the number of pro
es-

sors. Communi
ation 
osts are typi
ally determined on the basis of the laten
y and

bandwidth of the network [84℄. The laten
y of a 
ommuni
ations network is the so


alled \startup 
ost" required to establish a 
onne
tion to send a message. The

laten
y is independent of the length of the message. Bandwidth refers to the 
apa
-

ity of a 
ommuni
ations 
hannel (a spe
i�
 path through the network) to transmit

information, and is typi
ally given in bits per se
ond (bps).

Given a system with �xed bandwidth and laten
y, one 
an imagine there

is some optimum problem size for a given number of pro
essors, or 
onversely an

optimum number of pro
essors for a given problem size [84℄. Taking the latter

view, we 
an see that if we were to break up the domain into very tiny pie
es and

distribute it on many, many pro
essors, the 
ommuni
ation 
osts would prohibit a

timely solution of the problem. Alternatively, if we divide the domain into only a

few pie
es on a few pro
essors, the inter-pro
essor 
ommuni
ation 
ost will be low,

but then we would not be taking advantage of the parallel super
omputer. From

this, we 
an understand that for large 
omputations on many pro
essors, the inter-

pro
essor 
ommuni
ation 
an be so 
ostly that one 
an begin to see negative or

inverse s
aling, i.e. the user would be better o� re-running the simulation on fewer

pro
essors.

For grid-based-simulation 
odes, the need is not so mu
h for one pro
essor to


ommuni
ate with other pro
essors, but simply to a

ess the memory to obtain data
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whi
h were 
omputed using other pro
essors. Thus (as realized by Cray and others)

as long as the \memory link" is fast enough, the inter-pro
essor 
ommuni
ation per

se is not mu
h of an issue. However, shared-memory ar
hite
tures like the older

Cray super
omputers are falling out of fashion. On PC 
lusters, if one wants to

a

ess the memory on another motherboard, i.e. in a di�erent ma
hine, one has to

do so through the pro
essor(s) on the other motherboard, via a network 
onne
tion.

For an adaptive mesh 
ode, 
ommuni
ation 
osts are not easy to anti
ipate.

One 
ould imagine a s
enario (admittedly extreme) in whi
h an adaptive mesh


ode, be
ause of high amounts of inter-pro
essor 
ommuni
ations, 
ould a
tually

take longer to exe
ute than the 
orresponding unigrid 
ode whi
h renders a solution

at the same a

ura
y as the adaptive 
ode.

In summary, if one wants to write a parallel AMR 
ode, great 
are is required

in writing the 
ode to help ensure load balan
ing and the use of the most eÆ
ient


ommuni
ations as possible.

5.5 Towards Automati
, Parallel AMR

Both AMR and parallelism are very desirable qualities to have in a simulation


ode, but both require signi�
ant e�ort to implement. We note, however, that

many of the same tasks will be performed by any AMR simulation. These in
lude

the allo
ation and deallo
ation of memory for new grids, interpolation of 
oarsely-

resolved data onto �ne grid 
ells (what we 
all \prolongation"), trun
ation error

estimation and 
lustering (for Berger and Oliger 
odes), message passing between

pro
essors, parsing of parameters, and general input and output. Given the generi


aspe
ts of these tasks (i.e. they are largely independent of the physi
al problem

being modeled), one 
an imagine a 
omputing environment in whi
h these fun
tions

are provided as part of the pa
kage, thus freeing the user to 
on
entrate on the

physi
s at hand. In parti
ular, one might desire an environment in whi
h a user
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supplies a set of �nite di�eren
e equations, initial data, and boundary 
onditions

written for the solution of his or her problem on a single uniform grid, but in whi
h

all the above-mentioned ne
essary 
omponents of a parallel AMR 
ode are then

generated automati
ally.

5.6 An Implementation of Berger and Oliger's Method

For our implementation of Berger and Oliger's method, we require that new grids

share boundaries with (
olle
tions of) 
oarse grid 
ells. This means that we do not

allow grids with arbitrary orientation, but rather only grids with boundaries parallel

to those of the base grid.

5.6.1 Shadow Hierar
hy

In addition to the integration of the equations of motion on the grid hierar
hy, we

also 
ontinuously evolve the data on a pre
ise 
opy of the grid hierar
hy in whi
h

all grids are 
oarsened by a fa
tor of two. We 
all this 
oarsened 
opy of the grid

hierar
hy a shadow hierar
hy [27℄, and the original hierar
hy the base hierar
hy or

main hierar
hy. The shadow hierar
hy is used at regridding times to estimate the

lo
al trun
ation error. The usual implementation of the Berger and Oliger method

amounts to the de�nition of a shadow hierar
hy at ea
h regridding time, so we 
hoose

to be spared the e�ort of allo
ating and de-allo
ating storage every regridding time

and simply allow the shadow hierar
hy to exist at all times. More importantly, the

shadow hierar
hy eliminates the need to dupli
ate �ne grid storage at regridding

times, whi
h is a requirement of the original implementation of the Berger and

Oliger method. Thus we save memory and 
omputing time. The pri
e we pay

for this is that we evolve data on the shadow hierar
hy at all times, not just the

regridding times, but the hope is that the time we save in not dupli
ating �ne grid

storage at ea
h regridding time makes up for this 
ost. The 2 : 1 re�nement between
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the base and shadow hierar
hies requires a re�nement ratio of 2

p

: 1 between ea
h

grid level, where p is some integer. In our software, p is required to be 1.

5.6.2 Re�nement of Initial Data

Providing proper spe
i�
ation of the data and grid stru
ture at the initial time is at

least as 
ompli
ated as the AMR evolution of the data. We wish to ensure that we

begin the simulation with suÆ
ient mesh re�nement to adequately resolve all the

features of the initial data, su
h that the evolution does not a
quire large amounts

of trun
ation error from the �rst evolution step. The initial regridding algorithm


an be summarized by the following pseudo-
ode:

gfs = All grid fun
tions to be evolved (reside on Main and Shadow hierar
hies)

l = Current level in do loop

l

f

= Finest level 
urrently allo
ated

l

max

= Finest level allowed in the simulation

te = lo
al trun
ation error, a grid fun
tion

G

l

= List of lo
ations for new grids, obtained from 
lustering algorithm

Assign initial data on Main, level = 0

Assign initial data on Shadow, level = 0

l := 0 , l

f

:= 0

Repeat until (l

f

does not 
hange) or (l = l

max

)

l := l + 1

Take two steps on Main at level l

Take one step on Shadow at level l

Measure trun
ation error: te = gfs(Shadow) - gfs(Main)

Flag bad points: 
ags = where (te > Threshold)

Cluster 
agged points for pla
ement of new grids: G

l

= Cluster(
ags)

if (G

l

not empty) then

l

f

:= l

f

+ 1

Allo
ate new grids on l

f

at lo
ations spe
i�ed by G

l

Assign initial data on Main, level = 0...l

f

Assign initial data on Shadow, level = 0...l

f

end if

end Repeat
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Figures 5.1 and 5.2 show a series of steps in the re�nement of initial data 
onsisting

of a sharply-peaked gaussian.

5.7 Our Software

We are working to provide what we 
all a generi
 driver for parallel AMR appli-


ations. This generi
 driver is intended to run a simulation using user-provided

subroutines for (unigrid) integration of the equations of motion.

5.7.1 Infrastru
ture Provided by GrACE

The main set of routines for handing the operations on grids, and all aspe
ts of

parallelism, is provided in a pa
kage 
alled GrACE written by Manish Parashar. In

earlier versions, GrACE was known as DAGH [78℄. GrACE is an obje
t-oriented set

of programming abstra
tions whi
h provides the abstra
t programming interfa
es

for the allo
ation and de-allo
ations of grids, maintenan
e of the grid hierar
hy,

prolongation and restri
tion, and other operations involving grids. The 
lustering

algorithm supplied by GrACE is due to Paul Walker [101℄. A similar 
lustering 
ode

written by Reid Guenther [44℄ has been shown by Dae-Il Choi [20℄ to yield results

similar to those of Walker's 
ode.

5.7.2 Example: Solving 2D wave equation

The wave equation provides a natural hyperboli
 system from whi
h users may

develop their own simulations. (We 
hoose the wave equation rather than the trans-

port equation mainly be
ause the intended appli
ations typi
ally involve simulation

of wave-like phenomena.) The examples we provide are in two spatial dimensions,

but the extension to three su
h dimensions is straight forward. We give three dif-

ferent implementations for the solution of the 2D wave equation, and these go by

the names wave2d, wave2d1o, and amrwave2d1o. The wave2d example is a unigrid
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Figure 5.1: Initial grid re�nement of a sharply peaked gaussian �. Here we see six

di�erent levels of re�nement for the initial time in the evolution of sharp gaussian

pulse, on the domain (0; 0) � (x; y) � (10; 10). Data is shown on the main hierar
hy,

with re�nement levels are denoted by Ll, where l = 0 is the base grid and l = 5

is the �nest grid. Currently the 
omputing infrastru
ture supplied by GrACE (see

se
tion 5.7.1) is 
on�gured su
h that new grids are required to share boundaries

with the 
oarsest grid 
ells, hen
e the grids for levels 3, 4, and 5 span a domain

whi
h is twi
e the width of a level 0 grid 
ell. (This requirement will be relaxed in

a forth
oming version of GrACE.) The 
orresponding trun
ation error measured on

ea
h grid is shown in Figure 5.2.
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Figure 5.2: Trun
ation error �̂ for the initial grid re�nement of a sharply peaked

gaussian shown in Figure 5.1. The trun
ation error threshold, used for 
agging

data points in need of further re�nement, was �̂ = 0:7max(�̂ ), where max(�̂) is the

maximum value of the trun
ation error on ea
h grid. Sin
e the evolution s
heme

is se
ond-order a

urate, we expe
t the leading order trun
ation error to go as

�

3

�=�x

3

, yet we see from this �gure that the trun
ation error we obtain does not �t

the pro�le of the third derivative of a gaussian (whi
h should be an odd fun
tion, and

the above graph shows even fun
tions), and thus the 
omputer 
ode is not yielding

the expe
ted results. This requires further study.
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implementation of the usual wave equation expressed in terms of se
ond-order par-

tial derivatives. This 
an be exe
uted on one or many pro
essors via MPI. For the

Berger and Oliger system, it is absolutely essential to employ an evolution s
heme

whi
h is dissipative, in order to maintain the ne
essary smoothness of grid fun
-

tions and to avoid \over-gridding", i.e., applying �ne resolution to large areas of the

domain (where su
h resolution is unne
essary) as a result of poor trun
ation error

estimation. In pra
ti
e, we often prefer numeri
al s
hemes in whi
h the dissipation

is added expli
itly, and we know how to add dissipative terms su
h as B.5 for hyper-

boli
 systems 
ast in �rst-order form. With this in mind we provide a re
asting of

wave2d into �rst-order form, 
alled wave2d1o. This implementation endowed with

the ne
essary AMR routines is 
alled amrwave2d1o.

Figure 5.3 shows a 1D sli
e through a 2D AMR evolution using amrwave2d1o.

Full 2D visualization 
apabilities for AMR data are still under development. Manish

Parashar wrote a set of routines for use with the AVS visualization pa
kage [1℄

whi
h do provide visualization of 2D AMR data, however this software pa
kage is

not readily available to many resear
hers.

5.7.3 Implementation of `Generi
 Driver'

The generi
 driver should ideally be able to take a set of user-supplied update and

initialization routines whi
h were written for a sequential, unigrid appli
ation and

generate a 
omplete parallel AMR 
ode. The 
aveat to this statement is that it

should be able to take an appropriately written set of user-supplied routines and

generate a parallel AMR 
ode. Essentially, this means routines whi
h are written

to operate on a uniform subset of the 
omputational domain and whi
h 
he
k (in-

ternally) to determine if this subset in
ludes real, physi
al boundaries. In pra
ti
e,

it may take some work for a user to modify an existing sequential unigrid to run in

parallel, but from there the transition to parallel AMR 
ould be quite smooth.
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Figure 5.3: Animation of a 1D sli
e through a 2D evolution of the wave equation.

This shows the evolution of the massless s
alar �eld � (in Cartesian 
at spa
e) from

an initial gaussian pulse with

_

� = 0. Three levels of re�nement are shown: Level 0

(base grid) data is shown as a solid (bla
k) line, where we have omitted showing the

data points themselves to more 
learly show the data on additional levels. Level 1

data is shown as (blue) triangles, and Level 2 data as (red) squares. The domain is

(0; 0) � (x; y) � (10; 10), and we take the 1D sli
e along y = 5.
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We intend to integrate the generi
 driver with the 
ompiler for the Rapid

Numeri
al Prototyping Language (RNPL), a programming language developed by

Robert Marsa and Matthew Choptuik [69℄. RNPL is designed to allow users to write

unigrid, sequential �nite di�eren
e simulation 
odes with minimal e�ort. RNPL pro-

vides automati
 support for routine tasks su
h as I/O and memory management,

and allows the user to fo
us on the \physi
s" of interest. Thus RNPL allows for

signi�
ant redu
tions in development time. The user spe
i�es initial data, bound-

ary 
onditions, and update routines in a symboli
 form, and the RNPL 
ompiler

generates a 
omplete simulation 
ode (in Fortran, C or C++). An ultimate goal of

our proje
t is to have the RNPL 
ompiler generate a fully fun
tional parallel AMR

appli
ation from RNPL sour
e 
ode.

5.8 Present and Future Proje
ts

The spe
i�
 goal of this proje
t is for full integration with RNPL, so that authors of

RNPL sour
e 
an generate parallel AMR appli
ations automati
ally. Currently the

amrwave2d1o 
ode serves as a minimal `generi
' driver, in whi
h the user 
an repla
e

the update routines and some fun
tion 
alls in the 
ode with their own expressions.

Prior to my work on this proje
t, previous implementations by Mijan Huq,

Manish Parashar, Dae-Il Choi, Robert Marsa, Matthew Choptuik and Tom Goodale

were available. Huq and Parashar wrote a 2D wave equation solver, as did Choi.

Parashar and Goodale later provided a dual 2D/3D wave equation solver. Marsa

and Choptuik had written a pa
kage 
alled bbh_dagh, whi
h used Parashar's DAGH

library (the prede
essor to GrACE) and in
luded a parallel unigrid 
ode for solving

the 2D wave equation, using many of the 
onstru
ts in the bbhutil library whi
h

are shared with RNPL. My work 
onsisted of sele
ting from these di�erent pa
kages

the most useful routines and rewriting many of them to serve the purposes of a

generi
 driver.
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The result is bbh_gra
e [55℄, an update of Marsa and Choptuik's bbh_dagh

distribution whi
h in
ludes Parashar's newest GrACE library, provided in a form

whi
h 
an automati
ally 
on�gure itself on a variety of 
omputing platforms. This

in
ludes a 2D wave equation solver featuring parallel AMR, using a three-level

leapfrog update s
heme (previous implementations featured only two-level s
hemes

su
h as Ma
Corma
k predi
tor-
orre
tors). I rewrote the initial regridding rou-

tines of Choi to provide a 
lear interfa
e with the re
ursive integration routines of

Parashar, and to allow for a three-level update s
heme. I made two improvements to

the existing dissipation operator, �rst by removing a 
ause of asymmetry indu
ed by

the \weighted-average" operator being used, and se
ondly by repla
ing this (�rst-

order-a

urate) operator with the se
ond-order-a

urate Kreiss-Oliger dissipation

operator. I isolated elements of the 
ode whi
h would be \user-supplied" in the

\generi
 driver" s
enario, in whi
h the user supplies only unigrid updates and ini-

tialization routines and automati
ally obtains a parallel AMR 
ode. I expanded the


apabilities of GrACE by writing an additional reliable interfa
e for visualization

of 1D sli
es through the 2D data (an interfa
e to Matthew Choptuik's ser [22℄,

whi
h o�ers many features for data analysis not provided by xgraph [49℄, whi
h was

the only 1D visualization pa
kage with whi
h GrACE was designed to interfa
e),

and a utility to provide visualizations of the global grid stru
ture as a fun
tion of

time. I began developing do
umentation to supplement the existing GrACE/DAGH

do
umentation. I added a feature for overriding the 
lustering algorithm to obtain

regridding dire
tives from a �le, whi
h I used to perform 
onvergen
e testing of

AMR evolutions. I intera
ted regularly with Parashar, and provided 
onstru
tive

feedba
k regarding the features of GrACE and the previous parallel AMR imple-

mentations mentioned above. As a �rst step toward integration with RNPL, I wrote

a simple generi
 driver, using template �les (whi
h obey a simple, expandable and

generi
 HTML-like language I developed) and employed this with great eÆ
ien
y
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toward the 
reation of a 2D parallel AMR hydrodynami
s solver (albeit one whi
h

was not perfe
tly 
ux-
onservative) using existing sequential hydrodynami
s update

routines. This demonstrated viability of the generi
 driver idea. In summary, I de-

veloped a 
ohesive and portable pa
kage whi
h serves as a prototype for generi


parallel AMR appli
ations, 
ontaining many of the features and utilities desired by

developers of 
omputational physi
s appli
ations. However, this 
ode still has dif-

�
ulties whi
h remain to be fully resolved; as we saw in Figure 5.2, the trun
ation

error estimation, a key aspe
t of the Berger and Oliger s
heme, is not yielding the

expe
ted results. This is perhaps the most signi�
ant pie
e of work whi
h needs to

be 
ompleted in the near future.

Two additional features whi
h we 
onsider ne
essary for the generi
 driver

are the provision of 1D 
oordinate grid fun
tions (e.g. x, y) for update routines and

a \
hara
teristi
 fun
tion" or \mask" to en
ode information about boundary 
ondi-

tions and other spe
ial points on the grid. We would also like to provide a generi


interfa
e whi
h is Fortran 77 
ompliant (the present version of GrACE provides

subroutine headers for Fortran 90) and a simple interfa
e to GrACE's 
he
kpointing


apabilities. These e�orts are all underway and should be in
orporated into the

software shortly.

Visualization remains an issue. It is our desire to provide visualization tools

for bbh_gra
e whi
h 
an be obtained by many resear
hers at minimal 
ost. Prelim-

inary work involving the Iris Explorer [19℄ pa
kage using its 
urvilinear latti
e data

format has been promising. A �rst step in this dire
tion may be the development

of a program whi
h 
ollates the various data �les generated in an amrwave2d1o run

and outputs a single Explorer latti
e �le. A group led by John Shalf at NCSA is

developing a publi
ally-available software pa
kage for visualization of AMR data.

This pa
kage is 
alled LCA Vision [94℄, and it is 
ompatible with the IEEE output

whi
h bbh_gra
e 
an output using GrACE's output routines.
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The goal of providing an environment for automati
 development of parallel

AMR appli
ations has not yet been realized, but the work presented here represents

a nontrivial step toward the ful�llment of this goal.
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Chapter 6

S
alar A

retion

This se
tion of the dissertation represents work in progress to simulate the dynam-

i
s of the Maxwell-Massive-Klein-Gordon (MMKG) system around a spinning bla
k

hole. Su
h a system may have features similar to those found in magnetohydro-

dynami
 a

retion a

retion studies [53, 63℄. Currently we are working toward an

axisymmetri
 simulation on a Kerr ba
kground.

It has long been known that evolution of a linear s
alar test �eld in the Kerr

spa
etime 
an be solved via separation of variables [18℄. The governing PDEs are

thereby redu
ed to a system of ODEs, greatly simplifying the problem. Similarly,

Maxwell's equations in va
uum 
an be also solved on a Kerr ba
kground by separa-

tion of variables [97℄. The reader may therefore wonder why we may be interested

in using �nite di�eren
e te
hniques to solve for the evolution of s
alar and ele
tro-

magneti
 �elds on a Kerr ba
kground. In our system the s
alar �eld a
ts as a sour
e

for the ele
tromagneti
 �elds, and vi
e versa. The 
oupling between these �elds is

nonlinear. The author is not aware of any solution to this 
oupled system using sep-

aration of variables. Beyond this, the solution of this problem serves as a valuable

stepping stone toward the solution of the magnetohydrodynami
 equations in the

vi
inity of the bla
k hole (whi
h is not expe
ted to be obtainable via separation of
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Figure 6.1: Relationship between spheri
al 
oordinates (t; r; �') and 
ylindri
al 
o-

ordinates (t; d; z; ') (We 
hoose the letter d be
ause r and � are already employed

in the form of Kerr-S
hild metri
.).

variables ex
ept for a few simple 
ases).

6.1 Mathemati
al Preliminaries

6.1.1 Equations of Motion

We use the Kerr metri
 in spheri
al Kerr-S
hild 
oordinates (t; r; �; ') to derive

the equations of motion for the s
alar and Maxwell �elds, be
ause the Kerr metri


takes on a fairly simple form in these 
oordinates. Having obtained the equations of

motion, we will want to perform the simulation in 
ylindri
al Kerr-S
hild 
oordinates

(t; d; z; ') (see Figure 6.1) be
ause the numeri
al treatment of the axis is less diÆ
ult

in these 
oordinates than in spheri
al 
oordinates. Thus we will �nd it helpful to

hold both 
oordinate systems in mind, with the transformations

d = r sin � z = r 
os �

relating the two systems.
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In spheri
al 
oordinates, then, the metri
 takes the form

g

��

=

0

B

B

B

B

B

B

B

�

�1=�

2

�=�

2

0 0

�=�

2

1=b

2

+ a

2

sin �=� 0 a=�

2

0 0 1=�

2

0

0 a=�

2

0 1=

�

�

2

sin

2

�

�

1

C

C

C

C

C

C

C

A

For the 
ase of a = 0, this is the same form of the metri
 used in Chapters 3, and 4

(with variable a in Chapters 3 and 4 repla
ed by the letter b to avoid 
onfusion with

the bla
k hole spin parameter). For the Kerr ba
kground, we have the relations

�

2

(r; �) =

�

1 +

2Mr

�

2

�

�1

=

�

2

�

2

+ 2Mr

b(r; �) =

1

�

�(r; �) =

2Mr

�

2

+ 2Mr

:

The square root of the determinant of the metri
 is

p

�g = �b�

2

sin �:

The equations of motion for the s
alar �eld  (t; r; �; ') and the gauge �eld

A

�

(t; r; �; ') are given by

2 = U(j j) � ieA

�

g

��

(2�

�

 + ieA

�

 )� ier

�

A

�

 (6.1)

2A

�

+R

�

�

A

�

= ie (�

�

�

�

�� ��

�

�

�

) + 2e

2

A

�

��

�

: (6.2)

Be
ause the Kerr geometry is a va
uum spa
etime, we know from Einstein's equation

that the Ri

i tensor that appears in (6.2) is zero. We 
hoose the \Lorentz gauge"

in (6.1) su
h that r

�

A

�

= 0. This gauge 
ondition then be
omes a 
onstraint that

must be satis�ed in addition to the equations of motion.

The equations of motion for the 
omplex s
alar �eld and the Maxwell �eld are

fairly lengthy when fully written out as a system of �rst-order partial di�erential
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equations in 
ylindri
al 
oordinates. The in
lusion of these equations, roughly a

page ea
h in LaTeX format, is not thought to bene�t the reader in a signi�
ant way.

The simulation 
ode is 
urrently not properly evolving the 
omparatively simple

equations for one massless, un
harged real s
alar �eld on the Kerr ba
kground.

Thus we do not �nd it ne
essary or relevant to present the equations here.

6.1.2 Boundary Conditions

At the event horizon, the 
ausal stru
ture of the spa
etime implies that we require

no expli
it boundary 
ondition. Rather, we simply solve the equations of motion,

using appropriate \forward" di�eren
e operators for spatial derivatives. We dis
uss

these further below.

The outer boundary is more problemati
. If we were simply 
onsidering a

massless s
alar �eld we 
ould use the outgoing Sommerfeld 
ondition for the s
alar

and ele
tromagneti
 �elds. Sin
e the s
alar �eld has a nontrivial potential, both it

and the ele
tromagneti
 �elds to whi
h it 
ouples will not be well des
ribed by the

Sommerfeld 
ondition. Given that this simulation is a multidimensional one, the

option of using a very distant outer boundary (as we did in Chapter 3) is not feasible.

Another option involves varying the shift �, making �(r; �) ! 1 as r ! 1. This

sort of \montoni
ally in
reasingly boosted" 
oordinate system has been shown to be

very su

essful for a 
at ba
kground spa
etime [58℄, and it seems possible that this

method would also work well on a 
urved ba
kground. The 
urrent simulation 
ode

is not equipped to use a shift other than the shift of KS 
oordinates, so this option

has not been implemented. For the time being, while we improve other aspe
ts of

the 
ode as well, the grid fun
tions are simply held �xed at the outer boundary (i.e.

we impose Diri
hlet 
onditions at the outer boundary).
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6.1.3 Initial Data

Our initial data 
an be spe
i�ed largely arbitrarily, however it must satisfy 
ertain


onstraints. One 
onstraint is the Lorentz gauge 
ondition,

r

�

A

�

= g

��

�

�

A

�

+ �

�

��

g

��

A

�

= 0; (6.3)

whi
h must be satis�ed on the initial spa
elike hypersurfa
e. We solve (6.3) using

a simple pres
ription: To avoid solving an ellipti
 equation on the spa
elike hy-

persurfa
e, we solve for �

t

A

0

using existing data for the other �elds | whi
h at

the initial time would be freely spe
i�ed. Sin
e we are using the four-ve
tor po-

tential A

�

, we expe
t the magneti
 �eld B

i

= �

ijk

D

i

A

j

to satisfy the 
onstraint

D

i

B

i

= 0: In the work of J. Hawley and Evans [52℄, the authors note that for nu-

meri
al evolutions involving smooth fun
tions (su
h as s
alar �elds on a ba
kground

spa
etime), this expe
tation is warranted, however more sophisti
ated methods su
h

as their \
onstrained transport" s
heme are ne
essary for systems where the data

are not expe
ted to be smooth (e.g. in magnetohydrodynami
 systems). Our �nal


onstraint is Guass' Law

D

i

E

i

= �

e

; (6.4)

where E

i

is the ele
tri
 �eld related to the Maxwell tensor F

��

and the four-ve
tor

potential A

�
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�
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the proje
tion tensor onto the spa
elike hypersurfa
e, and �

e

= j

0

, where

j

�

= ie (�

�

�
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�

�

�
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:
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York and Piran [102℄ dis
uss a method for solving (6.4) by de
omposing E

i

on the

initial sli
e into longitudinal and transverse (divergen
e-free parts), E

i

= E

i

L

+E

i

T

,

allowing us to solve 6.4 as a Poisson equation

D

i

E

i

L

= D

i

D

i

U

where U is a s
alar fun
tion. Thus we are required to solve an ellipti
 equation at

the initial time. We intend to develop a multigrid solver to obtain the solution to

this ellipti
 equation. For early 
omputations, we will attempt to 
onstru
t very

simple initial data whi
h satis�es the 
onstraints in 
losed form, if possible.

With the initial data spe
i�ed, we 
an then evolve all the �elds indepen-

dently (\free evolution") and use the 
onstraints (6.3), (6.4) to 
he
k that the evo-

lution is pro
eeding 
onsistently, or we 
an solve the 
onstraints on ea
h spa
elike

hypersurfa
e (\
onstrained evolution") to insure that the evolution pro
eeds as self-


onsistently as possible.

What sort of initial data would 
orrespond to reasonable astrophysi
al s
e-

narios? We might like to 
onstru
t a sort of s
alar MHD a

retion disk, with the

s
alar �eld 
ir
ling the bla
k hole about the equatorial plane, and magneti
 �elds

threading the disk and hole verti
ally. We would also need to spe
ify initial time

derivatives for the data. Given the available de�nitions of \velo
ity" for the s
alar

�eld (
f. Se
tion 1.4.2), we would not expe
t to be able to 
onstru
t a uniform \Ke-

plerian" s
alar a

retion disk, but we may be able to 
onstru
t at least a uniform

mass distribution for the �eld, using the \boson star ansatz"  � exp(i!t). As an

initial step, we simply 
onsider axisymmetri
 initial data for an un
harged, massless

s
alar �eld. Then, having veri�ed that the 
ode operates properly for this simple


ase, we will add additional features su
h as mass and 
harge.
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6.2 Numeri
al Methods

The simulation 
ode, as it now stands, is intended to solve the Maxwell-Massive-

Klein-Gordon equations in axisymmetry. The spe
i�
ations are as follows: We use

a Crank-Ni
holson update s
heme with Kreiss-Oliger dissipation (as des
ribed in

the appendix). We ex
ise a subset of the interior of the event horizon (in
luding

the singularity), and refer to the boundary of this ex
ised region as the \inner

boundary" of the 
omputational domain. At the inner boundary, we impose no

expli
it boundary 
ondition, but rather solve the usual equations of motion using

\forward" and \ba
kward" di�eren
e operators. As advo
ated by Choptuik [29℄, we

use forward and ba
kward di�eren
e operators whi
h share the same leading order

trun
ation error as the 
entered di�eren
e operators (2.8) used throughout the rest

of the domain [29℄. For example, the forward di�eren
e operator in the d-dire
tion

has the form

�

d

uj

d=i�d;z=j�z

'

�4u

i;j

+ 7u

i+1;j

� 4u

i+2;j

+ u

i+3;j

2�z

:

Along the z-axis, we perform no �nite di�eren
e operations be
ause of the


oordinate singularity, and instead interpolate between the points on either side of

the axis.

The information regarding whi
h di�eren
e operations should be performed

(forward di�eren
ing, ex
ision, interpolation, et
.) is en
oded into the grid by means

of a 
hara
teristi
 or mask fun
tion. This is simply a fun
tion de�ned over the entire

grid, whi
h 
ontains di�erent numeri
 (integer) values to denote points whi
h should

be ex
ised, ba
kwards di�eren
ed, and so on.

6.3 Status and Future Work

We are �nding numeri
al instabilities near the inner boundary for z < 0, for the

simplest 
ase of a massless, un
harged real s
alar �eld. The evolution near the inner
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boundary for z > 0 seems to pro
eed properly, and we are investigating the 
ause

of this error (and asymmetry) in the 
al
ulations. We hope to resolve this shortly,

and then in
lude the dynami
s for the full Maxwell-Massive-Klein-Gordon system

shortly thereafter. We 
urrently have a 2D 
ode for non-axisymmetri
 evolution of a

s
alar �eld in the equatorial plane of a Kerr ba
kground, whi
h we hope to integrate

with little diÆ
ulty with the axisymmetri
 
ode for a full 3D evolution.
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Chapter 7

Con
lusions

We have 
onsidered the dynami
s of s
alar �elds in s
enarios whi
h have some


orresponden
e to 
ertain astrophysi
al systems. We studied the nonlinear dynami
s

of fairly simple systems 
omposed of s
alar �elds in spheri
al symmetry, and yet we

found a ri
h set of previously unknown phenomena. For the 
ase of boson stars,

we showed that it is possible to indu
e Type I 
riti
al behavior by imploding a

spheri
al shell of massless real s
alar �eld. We showed that there is mass ex
hanged

between the two �elds, and the 
omplex (boson star) �eld enters a 
riti
al state

whi
h 
orresponds to an unstable boson star modulo the presen
e of a \halo" in the

tail of the 
riti
al solution. This halo is presumed to be a remnant of the original

(stable) boson star, and does not seem to be part of the \attra
tor", the 
riti
al

solution. One interesting point raised by this work 
on
erns the behavior of neutron

stars under similar 
onditions: If the 
riti
al solutions (whi
h 
an either implode

to form bla
k holes or explode) 
orrespond to boson stars on the unstable bran
h,

then unstable boson stars 
an explode; and if unstable boson stars 
an explode, then

perhaps unstable neutron stars | whi
h share ma
ros
opi
 stability features with

boson stars | 
an also explode.

The boson stars we 
onsidered are 
omposed of 
omplex �elds in whi
h the
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real and imaginary parts a
t like two real s
alar �elds whi
h are 
ompletely un
ou-

pled, ex
ept via gravity. We showed that if we modify the temporal phase between

these two 
omponent �elds, it is possible to 
onstru
t other star-like obje
ts, whi
h

we have termed \multi-s
alar stars". These obje
ts persist as stable quasi-periodi


solutions for very long times. We found, however, that the dire
t 
onstru
tion of

truly periodi
 solutions via a Fourier 
osine series ansatz did not yield the expe
ted

evolutions, but instead di�erent periodi
 (or quasi-periodi
) solutions. This requires

further attention, yet our results, along with the seminal work by Seidel and Suen

[90℄, indi
ate that stable, long-lived star-like solutions are more 
ommon than pre-

viously assumed.

The work regarding adaptive mesh re�nement (AMR) represents nontrivial

progress toward the goal of a 
omputing environment in whi
h authors of simulation


odes for sequential, unigrid pro
essing 
an add parallel AMR features essentially

automati
ally. The work on initial data generation is the prin
ipal 
ontribution in

this area, however additional development tools have been 
reated to help future

developers of this 
omputing environment. There is a problem with the trun
ation

error estimation, whi
h 
an whi
h 
an result in 
ostly overgridding. Further devel-

opment and testing is ne
essary to produ
e a \programming systems produ
t" [17℄

whi
h will be useful to resear
hers worldwide.

Lastly we 
onsidered the simulation of a 
harged s
alar �eld on a Kerr ba
k-

ground. This was intended as a test problem for the AMR system, as a possible

\toy model" of hydrodynami
al a

retion, and as a new dynami
al study in its own

right. We look forward to pursuing this investigation in the future, working towards

the goal of simulating magnetohydrodynami
al a

retion in 
urved spa
etimes.
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Appendix A

Boson Star Mode Frequen
ies

In this appendix we have tabulated some sample values from the perturbation theory


al
ulations des
ribed in Chapter 3. The values and un
ertainties expressed in the

table 
aptions were determined by integrating (3.33) and (3.34) to various maximum

radii, for a range of error toleran
es in the integration routines. The values and

un
ertainties given in the tables were 
hosen to express the variation in our results.
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Table A.1: Shooting Parameters: Fundamental Mode. The values of �

0

(0) are exa
t.

Other quantities are given within an un
ertainty of �1 in the last signi�
ant digit.

�

0

(0) ! Æ�

00

(0)=Æ 

1

(0) �

2

6.0E-02 1.0417E+00 1.68E-01 0.28E-03

1.0E-01 1.0727E+00 0.29E+00 0.67E-03

1.4E-01 1.1067E+00 0.43E+00 1.11E-03

1.8E-01 1.1440E+00 0.59E+00 1.41E-03

2.2E-01 1.1849E+00 0.77E+00 1.31E-03

2.6E-01 1.2299E+00 0.98E+00 0.45E-03

2.7E-01 1.2419E+00 1.04E+00 0.05E-03

2.8E-01 1.2542E+00 1.10E+00 -0.43E-03

3.0E-01 1.2796E+00 1.24E+00 -1.71E-03

4.0E-01 1.4281E+00 2.08E+00 -1.84E-02

5.0E-01 1.6215E+00 3.45E+00 -7.09E-02

6.0E-01 1.8777E+00 5.79E+00 -2.11E-01

Table A.2: Shooting Parameters: First Harmoni
 Mode. The values of �

0

(0) are

exa
t, ! is given within an un
ertainty of �1 in the last signi�
ant digit, and the

other quantities are given within an un
ertainty of �2 in the last signi�
ant digit.

�

0

(0) ! Æ�

00

(0)=Æ 

1

(0) �

2

6.00E-01 1.8777E+00 0.63E+01 0.22E+00

7.00E-01 2.2230E+00 1.13E+01 0.32E+00

8.00E-01 2.6963E+00 2.09E+01 0.43E+00

9.00E-01 3.3536E+00 4.11E+01 0.53E+00

1.00E+00 4.2714E+00 0.84E+02 0.54E+00

1.10E+00 5.5471E+00 1.77E+02 0.42E+00

1.12E+00 5.8555E+00 2.07E+02 3.05E-01

1.14E+00 6.1842E+00 2.41E+02 1.46E-01

1.15E+00 6.3566E+00 2.59E+02 4.30E-02

1.16E+00 6.5346E+00 2.80E+02 -8.11E-02

1.17E+00 6.7184E+00 3.02E+02 -2.28E-01

1.18E+00 6.9083E+00 3.26E+02 -4.01E-01
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Appendix B

Finite Di�eren
e Algorithm for

Spheri
ally-Symmetri
 Evolution

Code

This appendix des
ribes the numeri
al evolution s
heme used in Chapters 3 and


hap:mss
hap. We approximate the 
ontinuum �eld quantities f�; a;�

1

;�

2

;�

3

;

�

1

; �

2

; �

3

; �

1

; �

2

; �

3

g by a set of grid fun
tions, quantities whi
h are obtained via

the solution of �nite di�eren
e approximations to the partial di�erential equations

(3.8), (3.11) - (3.14) on a domain whi
h has been dis
retized into a regular mesh

(i.e. latti
e) with mesh spa
ing �r in spa
e and �t in time. For a grid fun
tion u,

we denote the value of the grid fun
tion in the mesh lo
ation j in spa
e and n in

time by u

n

j

, e.g,

�

n

j

' � (n�t; (j � 1)�r) ;

where � (n�t; (j � 1)�r) is the 
orresponding value for the 
ontinuum solution.

The initial data is obtained via \shooting", a standard method of solving

ordinary di�erential equations, in a way essentially the same as that found in [86℄.
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The numeri
al method used for evolving the system of equations is a leapfrog s
heme,

whi
h is an expli
it s
heme requiring data at two previous time steps, n and n� 1,

to 
ompute a value at the next time step n + 1. Given a dis
retization of s
ale of

order h in time and spa
e, the leapfrog s
heme is O(h

2

) a

urate. Throughout the

mesh, the ratio �

CFL

� �t=�r is kept at a 
onstant value, whi
h must be less than

unity due to the stability requirements of the leapfrog s
heme.

To aid in the presentation of the di�eren
e equations, we de�ne the following

operators [23℄:

�

t

0

u

n

j

=

u

n+1

j

� u

n�1

j

2�t

�

r

0

u

n

j

=

u

n

j+1

� u

n

j�1

2�r

�

r

+

u

n

j

=

u

n

j+1

� u

n

j

�r

�

r

3

u

n

j

= 3

u

n

j+1

� u

n

j�1

(r

j+1

)

3

� (r

j�1

)

3

:

We also de�ne the averaging operator

�

r

+

u

n

j

=

1

2

�

u

n

j+1

+ u

n

j

�

;

whi
h takes pre
eden
e over other algebrai
 operations, e.g.

�

r

+

 

fg

2

h

!

=

�

r

+

f

n

j

�

�

r

+

g

n

j

�

2

�

r

+

h

n

j

:

The evolution equations, whi
h are applied to ea
h �eld f�

i

;�

i

; i = 1; 2; 3g


an then be written as:

�

t

0

�

n

j

= �

r

0

�

�

a

�

�
n

j

(B.1)

�

t

0

�

n

j

= �

r

3

 

r

2

�

a

�

!
n

j

� 2 (�a�)

n

j

(B.2)
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where the last term in the evolution equation for � is not applied to the massless

�eld.

Our boundary 
onditions are as follows: First, by regularity at the origin,

we have

�

n

1

= 0

for all n. To obtain �

n+1

1

we employ a \quadrati
 �t" at the advan
ed time,

�

n+1

1

=

4�

n+1

2

��

n+1

3

3

; (B.3)

whi
h is based on the regularity 
ondition, lim

r!0

�(t; r) = �

0

(t) + r

2

�

2

(t) + � � �.

A signi�
ant 
hallenge in the numeri
al solution of these equations is the

problem of the outer boundary 
ondition for the massive �eld. Numerous authors

have proposed methods to handle this. Having tried various methods in
luding �rst

order expansions of the dispersion relation [89℄, sponge �lters [60℄, and operator

splitting [7℄, we were unable to obtain a s
heme whi
h produ
ed results superior to

the simple Sommerfeld 
ondition one uses for massless �elds [54℄. Sin
e, however,

the Sommerfeld 
ondition is still inadequate for massive �elds, we have 
hosen to

run our simulations on a grid large enough that the outer boundary is out of 
ausal


onta
t with the region of interest for the time the simulation runs. So, for example,

if we are interested in a region 0 � r � 50 and times 0 � t � 400, then we pla
e

the outer boundary r

J

� 450. (While unbounded phase velo
ities are a feature of

the Klein-Gordon equation, we 
an argue on physi
al grounds as well as see quite


learly in simulations that it is the group velo
ity whi
h is the important quantity

in the numeri
al evolutions, and this is sub-luminal.) Re
ent work using a shifted


oordinate system, with a shift ve
tor that is vanishing in some region near r = 0 but

in
reases to unity as r ! r

J

, shows promise as a means of handling the 
hallenge of

the boundary 
ondition for the massive �eld [58℄, and this method may be employed

in future work. Thus the outer boundary 
ondition we employ is [26℄:
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�

n+1

J

=

 

3

�t

+

3

�r

+

2

r

J

!

�1

0

�

4�

n

J

� �

n�1

J

�t

+

4�

n+1

J�1

� �

n+1

J�2

�r

1

A

(B.4)

and an analagous equation is used for ea
h � variable.

After these evolved variables are obtained at the n+1 time step, we apply a

form of numeri
al dissipation advo
ated by Kreiss and Oliger [65℄. This is applied

to both �

n+1

j

and �

n+1

j

in the same manner. So, for instan
e we set

�

n+1

j

:= �

n+1

j

�

�

16

�

�

n�1

j+2

� 4�

n�1

j+1

+ 6�

n�1

j

� 4�

n�1

j�1

+�

n�1

j�2

�

; (B.5)

where � (0 < � < 1) is an adjustable parameter: typi
ally, we use � = 0:5.

The pre
eeding equations des
ribe the \evolution" aspe
t of the 
ode. The

other variables are evolved in a \
onstrained" manner, i.e. they are obtained on the

spa
elike hypersurfa
e n + 1 after the �elds �

n+1

j

and �

n+1

j

have been 
al
ulated.

The �eld values �

n+1

j

are obtained by updating the value at the outer boundary

j = J a

ording to

�

t

0

�

n

J

= +

�

�

a

�

�
n

j

(B.6)

and then integrating inward from j = J to j = 1 along the spatial hypersurfa
e at

n+ 1:

�

r

+

�

j

= �

r

+

�

j

: (B.7)

The Hamiltonian 
onstraint (3.11) 
an be solved at ea
h time step on
e all

the �eld variables have been 
omputed for the advan
ed time step. We use the

variable A � ln a to avoid loss of pre
ision near the origin in the following �nite

di�eren
e approximation, whi
h is evaluated at the advan
ed time step n+ 1:

�

r

+

A

j

= �

r

+

 

1� e

A

2 r

+

r

2

h

�

2

1

+�

2

2

+�

2

3

+�

2

1

+�

2

2

+�

2

3

+ e

A

�

�

2

1

+ �

2

2

�i

!

j

:

(B.8)
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This equation is solved using a pointwise Newton iteration, i.e. given a value

of A

n+1

j

(su
h as A

n+1

1

= 0 at the origin), we �nd the next value A

n+1

j+1

outward

along the spatial hypersurfa
e by solving (B.8) via Newton's method.

The sli
ing 
ondition 
an be solved on
e the �eld variables and the metri


fun
tion a have been obtained at the advan
ed time step, using the following linear

algebrai
 relation:

�

n+1

j+1

= �

n+1

j

�

(1=�r) + Z

(1=�r)� Z

; (B.9)

where

Z � �

r

+

 

a

2

� 1

2r

!

j

+

�

r

+

a

j

�

r

+

a

j

� �

r

+

h

ra

2

m

2

�

�

2

1

+ �

2

2

�i

j

:
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Appendix C

Details of Linear Stability Analysis

This appendix des
ribes the details regarding the boson star stability analysis dis-


ussed in Chapter 3. Following Gleiser and Watkins [43℄, we write the most general

time-dependent, spheri
ally-symmetri
 metri
 as

ds

2

= �e

�(t;r)

dt

2

+ e

�(t;r)

dr

2

+ r

2

d
;

and de
ompose the 
omplex massive �eld �(t; r) via

�(t; r) = [ 

1

(t; r) + i 

2

(t; r)℄e

�i!t

; (C.1)

where  

1

and  

2

are real.

In these variables, the Hamiltonian 
onstraint and sli
ing 
ondition 
an be

written as

�

0

=

1� e

�

r

+ r

�

e

���

h

(

_

�

1

+ ! 

2

)

2

+ (

_

�

2

� ! 

1

)

2

i

+  

02

1

+  

02

2

+ e

�

( 

2

1

+  

2

2

)

�

(C.2)

�

0

= �

0

+ 2

e

�

� 1

r

� 2re

�

( 

2

1

+  

2

2

) (C.3)

where a prime (

0

) denotes �=�r and an overdot (_) denotes �=�t.
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The Klein Gordon equation yields:
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and

 

00
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+

�

2
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+

�

0

� �

0

2
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+ e

�

�

e

��

!
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2
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���

!
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1

= 0: (C.5)

Another equation we will �nd useful is G

�

�

= 8�GT

�

�

, whi
h evaluates to

e

��

�

�

0

� �

0

2r
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1
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�

00

+

1

4

�

02

�

1

4

�
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�
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� e
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�
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�
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�
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2

1

+  

2
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)

�

�e

��

( 

02

1
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02
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)� ( 

2

1

+  

2
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): (C.6)

We use equations (C.2) through (C.4) to obtain the equilibrium solutions,

by setting

�(t; r) = �

0

(r) (C.7)

�(t; r) = �

0

(r) (C.8)

 

1

(t; r) = �

0

(r) (C.9)

 

2

(t; r) = 0: (C.10)

The equilibrium equations are then given by:

�

0

0

=

1� e

�

0

r

+ r

h

e

�

0

(!

2

e

��

0

+ 1)�

2

0

+ �

02

0

i

(C.11)

�

0

0

=

e

�

0

� 1

r

+ r

h

e

�

0

(!

2

e

��

0

� 1)�

2

0
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02
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(C.12)
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We now introdu
e four perturbation �elds|Æ�(t; r), Æ�(t; r), Æ 

1

(t; r) and Æ 

2

(t; r)|

and expand about the equilibrium 
on�guration by writing:

�(t; r) = �

0

(r) + Æ�(t; r) (C.14)

�(t; r) = �

0

(r) + Æ�(t; r) (C.15)

 

1

(t; r) = �

0

(r)(1 + Æ 

1

(t; r)) (C.16)

 

2

(t; r) = �

0

(r)Æ 

2

(t; r): (C.17)

These last expressions are substituted into (C.2), (C.3), (C.4) and (C.6) to

obtain the following equations for the perturbed quantities:
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The four equations above 
an be manipulated su
h that two variables, Æ�

and Æ 

2

are eliminated, leaving us with only two equations in two unknowns. To

obtain the �rst of these two equations, we subtra
t (C.18) from (C.20) to get
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To obtain the other equation, we di�erentiate (C.19) with respe
t to r, and

substitute the resulting expression, along with (C.18) and (C.19), into (C.21) to get
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where, di�erentiating (C.11) with respe
t to r we have
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(Note that (C.22) omits a fa
tor of exp(�

0

) whi
h one �nds in the � Æ�=(r

2

�

2

0

) term

of equation (34) in [43℄.) For the stability analysis, we assume a harmoni
 time

dependen
e, i.e.,

Æ 

1

(t; r) = Æ 

1

(r)e

i�t

Æ�(t; r) = Æ�(r)e

i�t

:
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Note that (C.23) and (C.24) 
ontain only se
ond derivatives with respe
t to time.

There are good arguments for assuming �

2

is purely real [61, 43℄, so we 
an determine

instability by simply looking for instan
es where �

2

< 0.

As a further 
onsideration, we note that the boson star system admits a


onserved Noether 
urrent,

J
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=

i

8�

g

��
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�); (C.25)

for whi
h the 
orresponding 
harge or \parti
le number" is
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Conventional stability analysis (see, e.g., [95℄) demands that we 
onsider

only perturbations for whi
h the total 
harge is 
onserved. Thus we 
ompute the

variation in the 
harge, ÆN , and work to ensure ÆN = 0. In pra
ti
e, sin
e we 
ut

o� the grid at �nite radius, it makes sense to 
onsider the fun
tion ÆN(r), the total


harge en
losed in a sphere with surfa
e area 4�r

2

. This quantity is

ÆN(r) =

1

!

Z

r

0

d~r ~r

2

e

(�

0

��

0

)=2

�

2

0

�

(

Æ�

0

2~r�

2

0

+

1

2

"

e

�

0

��

0

!

2

+

�

�

0

0

�

0

�

2

+

1� ~r�

0

0

~r

2

�

2

0

#

Æ�

�

�

0

0

�

0

Æ 

0

1

�

"

�e

�

0

��

0

!

2

+

�

�

0

0

�

0

�

2

+ e

�

0

#

Æ 

1

)

; (C.27)

where primes denote �=�~r. (Note that (C.27) 
ontains a term involving Æ 

0

1

, whi
h

was not in
luded in equation (35) of [43℄.) We then demand that ÆN ! 0 as r !1.

The boundary 
onditions are as follows:

At r = 0:

�

0

= 0

123



�

0

= 0

�

0

0

= 0

�

00

0

= �

1

3

(!

2

� 1)�

0

(C.28)

Æ 

00

1

=

1

3

�

�

3Æ�

00

2�

2

0

+

�

2(!

2

+ 1)� �

2

�

Æ 

1

�

(C.29)

Æ� = 0

Æ�

0

= 0:

As r !1:

ÆN ! 0

Æ 

1

! 0

Æ�! 0:

To solve the system (C.23) and (C.24) subje
t to the above boundary 
ondi-

tions, for a given value of �

0

(0), we resort to the method of \shooting," �rst for the

equilibrium solutions, then for the perturbed quantities. Spe
i�
ally, we 
hoose a

value for ! and solve the equilibrium equations numeri
ally by integrating outward

from r = 0. We do this repeatedly, performing a \binary sear
h" on ! (as des
ribed

in [86℄) until the boundary 
onditions for the equilibrium quantities are satis�ed.

Due to the linearity of the problem, we 
an 
hoose Æ 

1

(0) arbitrarily. We then

have two parameters left, namely �

2

and Æ�

00

(0). To make matters easy at �rst, we


onsider perturbations very 
lose to the transition between stability and instability.

At the transition point, �

2

is zero. Thus for boson stars near the transition point,

we 
hoose �

2

= 0 and shoot on the parameter Æ�

00

(0) until the boundary 
onditions

are satis�ed. As Gleiser and Watkins [43℄ note, the transition point o

urs at the

maximum boson star mass; so we 
an take two slightly di�erent equilibrium solutions

near the maximum mass and subtra
t them to generate solutions whi
h should agree

with those obtained from the perturbation problem. We use this method to obtain
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a trial value of Æ�

00

(0), and also as a way of 
he
king the �nal solution we obtain

from the perturbation analysis.

For more general 
on�gurations (�

2

6= 0), we 
hoose a value of �

2

and shoot

on Æ�

00

(0) until we �nd ÆN at the outer boundary of the grid to be less than some

toleran
e value. Then we use the fa
t (gleaned from experien
e) that if �

2

is too

large (too positive), ÆN will have a lo
al minimum, the value of whi
h will be less

than zero (i.e., ÆN(r) will dip below zero and then turn ba
k up at larger radii). If

�

2

is too low there will be no su
h lo
al minimum. We use these two 
riteria to sele
t

the value of �

2

via a binary sear
h. Thus our two-dimensional eigenvalue-�nding

algorithm 
onsists simply of two (nested) binary sear
hes, one in ea
h dire
tion: For

ea
h value of �

2

tried, a full binary sear
h on the parameter Æ�

00

(0) is performed

to drive ÆN(r

max

) ! 0. Then the solution of ÆN(r) is examined for the behavior

des
ribed above, and a new value of �

2

is sele
ted, and so on until both Æ�

00

(0) and

�

2

have been found to some desired pre
ision.
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