PHY4410 HW 4 Fall 2019 Due Friday Oct 11 by 4:30pm

Homework:
1. Show that for a Goussian, the average value (e.g. ofs) occurs at the same "location" as the maximum value.
2. Suppose g(N,U) = CU3N/2 where C= sor · constant.
a) Show that $U = \frac{3}{5}NZ$ b) Show that $(\frac{3}{5}U^2)_N < O$. This firm of g applies to an ideal gas.
3. In Python, write a program which will plot a histogram
of sums of rolls of N six-sided dize, such that you demonstrate an exact ensemble, i.e. each possible
Set of dice rolls is counted once and only once. Print out histograms for N=3, 6, 10.
4. Show that, for large N,
5. Prove the "lag version" of the Stirling Approximation:
5. Prove the "log version" of the Stirling Approximation: Using the fact that for integer N , $N! = \int_{-\infty}^{\infty} x^N e^{-x} dx$, $(= \Gamma(N+1))$ show that, for large N , $\ln N! \simeq N \ln N - N$. Hint: $\log(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots$

Better hint on 5: Much easier to use $\ln N! = \sum_{k=1}^{N} \ln k$, and let the sum become an integral!!