PHY4410 HQ 4 Fall 2019
Due Friday Oct 11 by 4:30 pm
Homework:

1. Show that for a Gaussian, the average value (e.g.ofs) occurs at the same "location" as the maximum value.
2. Suppose $g(N, u)=c U^{3 N / 2}$ where $C=$ son- constant.
a) Show the $U=\frac{3}{2} N \tau$
b) Show that $\left(\frac{\partial^{2} \sigma}{\left.\partial u^{2}\right)^{2}}\right)<0$. This from of g applies to an ideal gas.
3. In Python, write a program which will plot a histogram of sums of rolls of N six-sided dire, such that you demonstrate an exact ensemble, ie. each possible set of dice rolls is counted once and only once.

Print out histograms for $N=3,6,10$.
4. Show that, for large N,

$$
\left.\sigma(s) \simeq \ln g(N, 0)-2 s^{2} / N \quad \text { N(Ass, } 7^{\prime} s \text { theteasy }\right)
$$

5. Prove the "log version" of the Stirling Approximation:

Using the fiat that for integer $N, N!=\int_{0}^{\infty} x^{N} e^{-x} d x, \quad(=\Gamma(N+1))$ show that, for large $N, \ln N!\simeq N \ln N-N$ Hint: $\log (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots$
Better hint on 5: Much easier to use $\ln N!=\sum_{k=1}^{N} \ln k$, and let the sum become an integral!!

