## Homework 2, PHY4410, Fall '19. <br> Due by 4:15pm Friday Sept 13

1. Change the binsearch.py file (at http://hedges.belmont.edu/~shawley/PHY4410/code/) to solve for lowest root of the polynomial $\mathrm{f}(\mathrm{x})=(\mathrm{x}-4)^{*}(\mathrm{x}+2)^{*}(\mathrm{x}-10)$ using an initial bracket of $\mathrm{x} \_\mathrm{lo}=-5$ and $x_{\_} h i=0$. The exact solution should be $x^{*}=-2$. Run it, and copy and paste the output from the script into an electronic document (e.g. Word) for which you will ultimately submit a PDF for this \& other problems to Blackboard.
2. Similar to \#1, use the newtons.py script in the same directory to solve for the same root as in \#1. Use an initial guess of $\mathrm{x}=-4$. Copy \& paste the output. (Don't forget to update the derivative!)
3. Pendulum:
a) Find Hamilton's equations of motion for a simple pendulum of length $\ell$ in a uniform gravitational field $g$, in terms of position $\theta$ (angle) and conjugate (angular) momentum $p_{\theta}$.
b) Write a finite-difference approximation to these equations, and solve for $\theta$ and $p_{\theta}$ at the 'advanced' time step, i.e. $\theta_{n+1}$ and $p_{\theta n+1}$.
c) Write a Python program, called pendulum.py, which simulates the motion of the pendulum, and show different plots:
i. an animation that shows the motion of the pendulum in normal $x-y$ space
ii. a plot which shows the path of the system in phase space Details: start the pendulum from rest, let $\mathscr{C}=1.0$ and $g=9.8$, use a timestep of 0.01, and run for 100 time steps.
d) Save the animation as a movie called "pendulum.mp4", and upload the movie to your phy4410/ directory on hedges, and upload your python source code there as well.
