
PHY4410	Notes		 	 	 	 	 	 	 	 	 Dr.	Hawley	
	

Computational	Physics	
is	the	use	of	computer	algorithms	to	model	physical	systems.			
	
Typical	CP	tasks:	

• Solving	equations:	e.g.	simulation,	root-finding	
o Symbolically	
o Numerical	Approximation	

• Optimization	
• Matrix	manipulation	

	
Technically,	CP	falls	under	“theoretical”	physics	or	“applied	math”	because	it	involves	interacting	
with	a	model	rather	than	the	physical	world	directly.		However,	there	are	many	aspects	of	CP	
which	resemble	experimental	science,	especially	in	the	simulation	of	nonlinear	systems	–	one	can	
conduct	“virtual	experiments.”	
	
CP	is	typically	used	for	solving	‘complicated’	problems,	e.g.	nonlinear	equations,	large	matrices,	
partial	differential	equations.	
	
	
	
	
Unix	Basics	
The	majority	of	CP	is	done	on	UNIX	systems,	so	a	working	knowledge	of	UNIX	operation	is	
necessary.		While	many	GUI	(graphical	user	interface)	and	windows-like	interfaces	exist	for	UNIX	
systems	(e.g.,	on	Mac	OS	X),	the	use	of	the	command	line	or	terminal	is	essential.		On	UNIX	this	is	
known	as	the	“shell,”	and	various	flavors	of	shell	are	available,	e.g.	sh,	csh,	bash,	tcsh.		For	this	
class,	we’ll	use	tcsh.	
	
For	remote	login,	we’ll	use	the	“secure	shell”	ssh,	via	

ssh	<username>@<computer	hostname	or	IP	address>	
which	will	put	you	on	the	remote	machine	and	drop	you	into	a	shell.	
	
Filesystem	
Like	other	systems	you	may	have	worked	on,	programs	and	data	are	stored	as	“files”,	organized	
within	folders	known	as	“directories.”		The	filesystem	is	case-sensitive,	except	on	many	Macs.		The	
current	directory	is	known	as	“.”,	and	the	parent	directory	is	“..”.		Thus	“ls	.”	shows	all	the	files	&	
directories	in	a	current	directory.		“ls	..”	shows	all	files	&	directories	in	the	parent	directory.		
	
Basic	Shell	Commands	

• ls				“list”.		Show	files	in	a	directory	
o ls	–l				“long	list”,	shows	detailed	info	
o ls	–a			“list	all”,		shows	hidden	files	too	

• man		 Shows	the	“Manual	Page”	(help	page)	for	a	given	program.	
o “man	ls”			tells	about	the	ls	command	&	additional	options	
o “man	man”			tells	about	man	

o “man	woman”			reveals	nothing!	
• cp			copy.				“cp	<file>	<newfile>”	
• mv		move.		Like	cp,	but	removes	original	
• rm	remove.		Deletes	a	file.	
• mkdir	make	directory.		Creates	a	“folder”	in	the	filesystem	
• cd			change	directory.		“Go	into”	a	directory	
• rmdir	remove	(empty)	directory	
• cat			shows	contents	of	a	file	
• more			like	cat,	but	with	page	breaks	

	
Running	Programs	
Just	type	in	the	name	of	the	program.			It	must	be	regarded	as	“executable”	by	the	filesystem	in	
order	to	run.		Often	a	“./”	before	the	program	name	is	necessary	if	the	program	is	in	the	current	
directory,	as	in	“./myprogram”.		This	is	for	security	reasons:	it	is	inadvisable	to	have	“.”	as	part	of	
the	PATH.		(More	on	PATH	later…)		
	
	
	
	
Root-Finding	
	
Intro	
Consider	the	function	

€

f (x) = x 3 − 3x 2 + 3x − 2 ,	shown	in	the	graph	below:	

	
	
We	call	the	value	of	x	for	which	f(x)	=0	the	“root”	or	“solution”	to	the	equation,	and	denote	this	
value	by	x*.		One	can	see	by	inspection	of	the	equation	that	the	root	in	this	case	is	at	x	=	2,	so	we	
say	x*	=	2.		Let’s	pretend	we	don’t	know	this,	as	we	will	later	want	to	find	roots	of	non-linear	
equations	in	which	the	root	is	not	easily	obtained	by	inspection.	In	fact	this	will	often	require	
numerical	root-finding	algorithm	to	approximate	the	solution	to	some	desired	accuracy	or	
tolerance	δ.	
	
	
Binary	Search	
One	method	of	root	finding	is	to	put	a	“bracket”	around	the	solution,	using	an	upper	bound	xhigh	
which	you	“know”	is	greater	than	the	solution	x*,	and	a	lower	bound	xlow	which	is	known	to	be	
less	than	x*.				
	

-3 -2 -1 0 1 2 3 4 5 6

-3

-2

-1

1

2

3

	
	
The	next	step	is	to	compute	the	mid-point	xmid	=	(xhigh	+	xlow)/2,	and	evaluate	f(xmid).		If	f(xmid)	<	0	,	
then	we	“move	the	upper	bound	in”,	by	setting	xhigh	=	xmid;	however	if	f(xmid)	>	0,	then	we	set	xlow	=	
xmid..	
	
After	this	we	compute	a	new	xmid,	and	move	the	bounds	of	the	bracket	as	above.		This	process	
repeats,	with	f(xmid)	getting	progressively	closer	to	zero,	until	it	deviates	from	zero	by	less	than	
the	desired	tolerance,	i.e.,	until		|f(xmid)|	<	δ.	
	
This	process	is	certain	to	find	a	value	which	closely	approximates	x*,	if	a	root	exists	within	the	
initial	bracket.		If	multiple	roots	exist	within	the	bracket,	then	it	will	produce	one	of	them,	but	it	
may	not	be	obvious	at	the	beginning	which	root	that	will	be.		So	proper	bracketing	of	the	solution	
is	a	requirement	for	this	method	to	be	used	effectively.		
	
The	algorithm	itself	can	be	regarded	as	“slow”	compared	to	other	approaches	which	converge	
more	quickly.			Let’s	see	how	it	performs	on	our	original	equation	for	an	initial	bracket	extending	
from	x	=	-10	to	+10.		Below	is	the	output	of	a	script	which	gives	columns	for	the	iteration	number	
n	and	other	relevant	values,	for	δ	=	0.01:	

n xlow xmid xhigh f(xmid) |x*	-	x|	
--
1 -10 0 10 -2 2
2 0 5 10 63 3
3 0 2.5 5 2.375 0.5
4 0 1.25 2.5 -0.984375 0.75
5 1.25 1.875 2.5 -0.330078125 0.125
6 1.875 2.1875 2.5 0.674560546875 0.1875
7 1.875 2.03125 2.1875 0.096710205078125 0.03125
8 1.875 1.953125 2.03125 -0.134136199951172 0.046875
9 1.953125 1.9921875 2.03125 -0.0232548713684082 0.0078125

	
One	can	observe	that	the	solution	error	|x*	-	x|	is	going	down	by	a	factor	of	4	every	other	
iteration,	for	an	average	convergence	of	2-n,	that	is	an	average	decrease	by	a	factor	of	2	per	
iteration.		If	we	continue	for	two	more	iterations,	we	find	a	solution	error	of	0.001953125.	
	
	

-3 -2 -1 0 1 2 3 4 5 6

-3

-2

-1

1

2

3

[
xlow	

]	
xhigh	

|	
xmid	

Newton’s	Method	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
…converges	much	faster.		Here’s	the	output	for	the	same	function	as	above,	starting	with	x0	of	10:	
	
n x f(x) |x*	-	x|	
--
1 10 728 8
2 7.00411522633745 215.444749345717 5.00411522633745
3 5.01199005522363 63.5772495115326 3.01199005522363
4 3.69536903307254 18.5818943654043 1.69536903307254
5 2.84279468192733 5.25793215979049 0.842794681927328
6 2.32668759444275 1.33510279948754 0.326687594442753
7 2.07384157815964 0.238285097487909 0.0738415781596395
8 2.00496125174223 0.014957719399586 0.00496125174223083
9 2.00002445220083 7.33583962357898e-05 2.44522008308046e-05
10 2.00000000059789 1.79367276587072e-09 5.97891069986645e-10
11 2 0 0
	
where	“0”	means	“machine	precision”,	typically	around	1e-16	for	many	computers.	
Notice	the	“precision	doubling”	which	begins	around	n	=	7,	once	enough	iterations	place	us	in	the	
“convergence	regime”.			This	is	where	the	error	(a	small	number)	is	approximately	squared	with	
each	iteration!			
	
For	comparison,	recall	that	for	the	binary	search	the	error	only	decreased	by	some	constant	
factor	(on	average,	2),	and	after	11	iterations	it	had	only	reached	a	precision	of	about	0.002.			To	
get	to	a	tolerance	of	3e-15,	we	would	need	to	continue	the	binary	search	to	over	fifty	iterations.	
	

!"#!$#!%#
!"

&'()'#*+',#+-+'+(.#/0122#!"3#

Here’s	a	graph	comparing	the	two	methods,	each	with	δ	=	3e-15:	

	
(Note	that	the	final	iteration	of	Newton’s	method	cannot	be	displayed	on	this	graph.)	
	
Newton’s	Method	can	fail	“spectacularly”	if	it	hits	a	region	where	the	df/dx	goes	to	zero,	in	which	
case	the	“linear	projection”	will	send	the	“next	point”	out	to	infinity.		Thus	it	is	wise	to	start	the	
initial	guess	such	that	df(x)/dx	in	the	region	between	x0	and	x*		is	always	positive	or	always	
negative.	
	
	
Plotting	in	Python	
	
Many	programming	languages	are	used	in	computational	physics.		One	of	the	currently	most	
popular	languages,	especially	for	rapid	prototyping,	is	Python.		Python	enjoys	a	large	user	base	
with	many	scientific	packages	available	such	as	numpy	and	scipy.	
	
Often	we’ll	want	to	look	at	graphs	of	our	work,	and	the	matplotlib	module	does	just	want	we	
want.				Consider	the	following	example	in	
http://hedges.belmont.edu/~shawley/PHY4410/code/…	
	

0 10 20 30 40 50 60
n

-20

-15

-10

-5

0

lo
g 10

|x
*-

x|

Binary Search
Newton's Method
y = 0.83612 - 0.30103*x

% cat simple_plot.py
#!/usr/bin/env python

import numpy
import matplotlib.pyplot as plt

x = numpy.arange(0.0, 1.0+0.01, 0.01)
y = numpy.cos(2*2*numpy.pi*x)

fig = plt.figure()
axes = fig.add_subplot(111)
#axes.set_xlim(0,1) # if you don't set limits, it will autoscale
#axes.set_ylim(-1,1)
axes.set_title("The title")
axes.set_xlabel("Time (s)")
axes.set_ylabel("Distance (m)")

axes.plot(x,y)
plt.show()

We	can	run	this	either	via		
% python simple_plot.py
or,	if	the	script	is	executable	(obtained	via	running	“chmod u+x simple.plot.py”),	by	simply	
typing	
% ./simple_plot.py

	

	
	
	
	
	
	
	
	
	
	
	
	

	
Next:	Animations…	
	
Next:	Numerical	Integration…	
	

