PHY2250 - Electronics \& Circuit Theory, Practice Test

Name:___Dr. Hawley \qquad
Turn off (OFF) all cell phones

Multiple Choice: In the following problems, choose the "best" answer.

1. (4 points) When a transistor is in saturation,
a) $V_{C E}=V_{C C}$
b) $\mathrm{I}_{\mathrm{C}}=0 \mathrm{~A}$
c) $V_{C E}=V_{C C} / 2$
d) $\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}$
2. (4 points) For the common-collector amplifier, the input and output voltages are
(a) in phase.
b) 90° out of phase.
c) 180° out of phase.
d) 270° out of phase.
3. (4 points) In a FET, what are the labels of the three connections?
a) emitter, collector, base
b) drain, source, base
c) source, gate, drain
d) gain, emitter, source
4. (4 points) How many leads on an op-amp are typically used?
(a) 5
b) 6
d) 9

5 . (4 points) How many pins are there on a 741 IC op amp package?
a) 5
b) 6
c) 7
d) 8
6. (4 points) Calculate the $A C$ resistance r_{E}^{\prime} (or $R_{E t}$) of the emitter diode in a transistor for an emitter eurrent $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$.

(a) 25Ω	b) 20Ω
c) 10Ω	d) 5Ω

7. (4 points) In a given transistor circuit, the DC currents are $\mathrm{I}_{\mathrm{E}}=25 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA} . \mathrm{I}_{\mathrm{C}}=$?"
a) .4 mA
(b) 24 mA
c) 5 mA
d) 2 mA
next page

Questions 8 to 17 refer to the following circuit used (unknowingly) by the Jonas Brothers. Use the values $R_{1}=5.5 \mathrm{k} \Omega, R_{2}=4.5 \mathrm{k} \Omega, R_{C}=1 \mathrm{k} \Omega, R_{E}=750 \Omega$, and $R_{L} "=$ " infinity.

Questions 8 through 14 refer to DC , "quiescent points" of the transistor's operation:
8. (4 points) $\mathrm{V}_{\mathrm{B}}=$?
a) 6.6 V
(c) .4 V
b) 4.7 V
d) 3.3 V
9. (4 points) $\mathrm{V}_{\mathrm{E}}=$?
a) 6.6 V
b) 5.4 V
c) 4.7 V
d) 3.3 V
10. (4 points) $\mathrm{I}_{\mathrm{E}}=$?
a) 4.5 mA
b) 0.2 mA
c) 6.3 mA
d) 1.2 mA
11. (4 points) If $\mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=$
a) 0.32 mA
b) 3.2 mA
(c) 6.2 mA
d) 12 mA
12. (4 points) $\beta_{\mathrm{DC}}=$
a) 73
b) 225
c) 108
d) 62
13. (4 points) $\mathrm{V}_{\mathrm{C}}=$?
a) 4.3 V
b) 6.2 V
c) 4.7 V
d) 5.8 V
14. (4 points) $\mathrm{V}_{\mathrm{CE}}=$?
a) 1.2 V
b) 3.8 V
c) 1.5 V
d) 12 V
15. (4 points) If Q_{1} were in saturation (e.g. when V_{B} swings high), what would V_{C} be?
a) 0 V
b) 4.7 V
c) 5.14 V
d) 12 V
16. (4 points) If Q_{1} were in cutoff (e.g. when V_{B} swings low), what would V_{C} be?
a) 0 V
b) 4.7 V
c) 5.14 V
d) 12 V
17. (4 points) The above transistor is connected in a common- \qquad configuration.
a) collector
b) base
c) emitter
d) mode
18. (4 Points) The best name for the following op-amp circuit (below) is
a) Closed-loop non-inverting amplifier (b) Active Low-pass filter
c) Compressor
d) Comparator
e) The Circuit That Must Not Be Named

Short Answer: In the following problems, remember to show your work in completing any calculations.
19. (6 points) Draw the DC Load Line for the circuit referred to in problems 8 to 17.
$\mathrm{V}_{\mathrm{CE}(\mathrm{FFF})}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CEQ}}=1.1 \mathrm{~V}$
$I_{C Q}=6.2 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}(\mathrm{SAT})}=12 \mathrm{~V} /(750 \Omega+1000 \Omega)=6.9 \mathrm{~mA}$

20. (10 points) Regarding the following op-amp circuit...
a) Find $V_{\text {. }}$, the voltage at the - input, in terms of R_{1}, R_{F} and $V_{\text {out }}$.
b) If the feedback loop functions so as to force $\mathrm{V}_{-}=\mathrm{V}_{+}$, use your answer to (b) to compute the gain of the amplifier (in terms of R_{1} and R_{F}). Show all work.

a) Regarding the upper "path" of the circuit as a voltage divider,

$$
\mathbf{V}_{.}=\mathbf{V}_{\text {out }} \mathbf{R}_{1} /\left(\mathbf{R}_{1}+\mathbf{R}_{\mathrm{F}}\right)
$$

b) $V_{+}=V_{\text {in }}$, so setting $V_{+}=V_{\text {. yields }}$ $\mathbf{V}_{\text {in }}=\mathbf{V}_{\text {out }} \mathbf{R}_{\mathbf{1}} /\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathrm{F}}\right)$

Thus $A_{V}=V_{\text {out }} / V_{\text {in }}=\left(R_{1}+R_{F}\right) / R_{1}=1+R_{F} / R_{1}$.
21. (12 points) Design a voltage-divider-biased amplifier, i.e. find values for resistors R_{1}, R_{C} and R_{E} given the following specifications: $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CEQ}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=20 \mathrm{~mA}, \beta_{\mathrm{DC}}=200$, $\mathrm{R}_{2}=3 \mathrm{k} \Omega$. Show all work, and put boxes around your final resistor values.

Solve for R_{C} : $\quad V_{C}=V_{C C}-I_{C} R_{C .}$ Thus $R_{C}=\left(V_{C C}-V_{C}\right) / I_{C Q}=(12-7) / .02=\mathbf{2 5 0 \Omega}$
Solve for $R_{E}: V_{E}=V_{C}-V_{C E Q}=7-5.5=1.5 \mathrm{~V}$

$$
\begin{aligned}
& I_{E}=I_{C}\left(\beta_{\mathrm{DC}}+1\right) / \beta_{\mathrm{DC}}=20 \mathrm{~mA}(201) / 200=20.1 \mathrm{~mA} \\
& R_{\mathrm{E}}=\mathrm{V}_{\mathrm{E}} / I_{\mathrm{E}}=1.5 / 0.0201=75 \Omega
\end{aligned}
$$

Solve for $R_{1}: V_{B}=V_{E}+0.7 \mathrm{~V}=2.2 \mathrm{~V}$

$$
\text { also } \quad \begin{aligned}
& \mathbf{V}_{\mathrm{B}}=\mathbf{V}_{\mathrm{CC}} \mathbf{R}_{2} /\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right) \\
& \mathbf{V}_{\mathrm{B}}\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)=\mathbf{V}_{\mathrm{CC}} \mathbf{R}_{2} \\
& \\
& \mathbf{V}_{\mathrm{B}} \mathbf{R}_{1}+\mathbf{V}_{\mathrm{B}} \mathbf{R}_{2}=\mathbf{V}_{\mathrm{CC}} \mathbf{R}_{2} \\
& \\
& \mathbf{V}_{\mathrm{B}} \mathbf{R}_{1}=\mathbf{V}_{\mathrm{CC}} \mathbf{R}_{2}-\mathbf{V}_{\mathrm{B}} \mathbf{R}_{2}=\mathbf{R}_{2}\left(\mathbf{V}_{\mathrm{CC}}-\mathbf{V}_{\mathrm{B}}\right) \\
& \\
& \mathbf{R}_{1}=\mathbf{R}_{2}\left(\mathbf{V}_{\mathrm{CC}}-\mathbf{V}_{\mathrm{B}}\right) / \mathbf{V}_{\mathrm{B}} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& =1 \mathbf{3 k}(\mathbf{1 2}-\mathbf{1 3 6 4} \mathbf{2 3} \mathbf{2}) / \mathbf{2 . 2}
\end{aligned}
$$

Extra Credit:

22. (3 points) Which is the more popular transistor biasing method and why : base bias or voltage divider bias?

Voltage divider biasing is more common because it is more stable with respect to temperature fluctuations and with respect to variations in β_{DC} of the transistor (e.g. if the transistor is replaced).
23. (2 points) How many valence electrons does Aluminum have?

Answer: 3.

