	Name:Dr. Hawley
Turn off (OFF) all cell phones	
1. (4 points) When a transistor is in	
a) $V_{CE} = V_{CC}$ c) $V_{CE} = V_{CC}/2$	b) $I_C = 0A$ d) $V_{CE} = 0V$
2. (4 points) For the common-collection	ctor amplifier, the input and output voltages are
(a) in phase.	b) 90° out of phase.
c) 180° out of phase.	d) 270° out of phase.
3. (4 points) In a FET, what are the	labels of the three connections?
a) emitter, collector, base	b) drain, source, base
c)source, gate, drain	d) gain, emitter, source
4. (4 points) How many leads on an	op-amp are typically used?
(a)5	b) 6
c) 8	d) 9
5. (4 points) How many pins are th	ere on a 741 IC op amp package?
a) 5	b) 6
c) 7	(d)}8
	tance r' _E (or R _{EI}) of the emitter diode in a transistor for an emitter
current $I_E = 1 \text{mA}$.	
<u>(a)</u> 25 Ω	— <u>b) 20-Ω</u>
<u>c) 10-Ω</u>	<u>d) 5-Ω</u>
7 (4 points) In a given transistor ci	rcuit, the DC currents are $I_E = 25 \text{mA}$, $I_B = 1 \text{mA}$. $I_C = ?$ "
a) .4 mA	(b) 24 mA
c) 5 mA	d) 2 mA
next page	

Questions 8 to 17 refer to the following circuit used (unknowingly) by the Jonas Brothers. Use the values R_1 = 5.5k Ω , R_2 = 4.5k Ω , R_C = 1k Ω , R_E = 750 Ω , and R_L "=" infinity.

- 18. (4 Points) The best name for the following op-amp circuit (below) is
 - a) Closed-loop non-inverting amplifier
- b) Active Low-pass filter

c) Compressor

- d) Comparator
- e) The Circuit That Must Not Be Named

Short Answer: In the following problems, remember to <u>show your work</u> in completing any calculations.

19. (6 points) Draw the DC Load Line for the circuit referred to in problems 8 to 17.

$$V_{CE(OFF)} = 12V$$
, $V_{CEQ} = 1.1 V$

$$I_{CQ} = 6.2 \text{ mA}, \quad I_{C(SAT)} = 12 \text{V} / (750\Omega + 1000\Omega) = 6.9 \text{ mA}$$

- 20. (10 points) Regarding the following op-amp circuit...
- a) Find $V_{\mbox{\tiny .}}$, the voltage at the input, in terms of $R_{\mbox{\tiny 1}}, R_{\mbox{\tiny F}}$ and $V_{\mbox{\tiny out}}$
- b) If the feedback loop functions so as to force $V_{-} = V_{+}$, use your answer to (b) to compute the gain of the amplifier (in terms of R_{1} and R_{F}). Show all work.

a) Regarding the upper "path" of the circuit as a voltage divider,

$$V_{\perp} = V_{\text{out}} R_1 / (R_1 + R_F)$$

b) $V_+ = V_{in}$, so setting $V_+ = V_-$ yields

$$\mathbf{V}_{\text{in}} = \mathbf{V}_{\text{out}} \, \mathbf{R}_{1} / (\mathbf{R}_{1} + \mathbf{R}_{F})$$

Thus $A_V = V_{out} / V_{in} = (R_1 + R_F) / R_1 = 1 + R_F / R_{1.}$

21. (12 points) Design a voltage-divider-biased amplifier, i.e. find values for resistors R_I , R_C and R_E given the following specifications: $V_{CC} = 12 \text{ V}$, $V_C = 7 \text{ V}$, $V_{CEQ} = 5.5 \text{ V}$, $I_{CQ} = 20 \text{ mA}$, $\beta_{DC} = 200$, $R_2 = 3k\Omega$. Show all work, and put boxes around your final resistor values.

Solve for
$$R_C$$
: $V_C = V_{CC} - I_C R_C$. Thus $R_C = (V_{CC} - V_C) / I_{CO} = (12 - 7) / .02 = 250 \Omega$

Solve for
$$R_E$$
: $V_E = V_C - V_{CEQ} = 7 - 5.5 = 1.5 \text{ V}$

$$I_E = I_C (\beta_{DC} + 1) / \beta_{DC} = 20 \text{mA} (201) / 200 = 20.1 \text{ mA}$$

$$R_E = V_E / I_E = 1.5 / 0.0201 = 75 \Omega$$

Solve for
$$R_1$$
: $V_B = V_E + 0.7 V = 2.2 V$

also
$$V_B = V_{CC} R_2 / (R_1 + R_2)$$

 $V_B(R_1 + R_2) = V_{CC} R_2$
 $V_B R_1 + V_B R_2 = V_{CC} R_2$
 $V_B R_1 = V_{CC} R_2 - V_B R_2 = R_2 (V_{CC} - V_B)$
 $R_1 = R_2 (V_{CC} - V_B) / V_B$
 $= 3k (12 - 2.2) / 2.2$
 $= 13364 \Omega$

Extra Credit:

22. (3 points) Which is the more popular transistor biasing method *and why*: base bias or voltage divider bias?

Voltage divider biasing is more common because it is more stable with respect to temperature fluctuations and with respect to variations in β_{DC} of the transistor (e.g. if the transistor is replaced).

23. (2 points) How many valence electrons does Aluminum have?

Answer: 3.