PHY2250 - Electronics & Circuit Theory Practice Test 2

Show all work Turn off (OFF) all cell phones Answer on separate paper. Hand in this sheet separately. Answers on this sheet will not be considered. 100 points total

Questions 1 and 2 refer to the following oscilloscope traces: #1 #2 #2 Volts/div: 0.5V Time/div: 20µs H2 Volts/div: 0.1 mV Time/div: 2µs

1. (12 points) Identify each of these characteristics/values for the signal above on the left.

a) Type of signal (i.e., the "name" of the "wave shape") Answer: Triangle wave b) Amplitude Answer: $V_{pp} = (5div)*(0.5V/div) = 2.5V$. $A = V_{pp}/2 = 1.25V$ c) Frequency Answer: T= $(5.5div)*(20\mu s/div) = 110\mu s, f = 1/T = 9.1 kHz$

2. (12 points) Identify each of these characteristics/values for the signal above on the right.

a) Type of signal (i.e., the "name" of the "wave shape") Answer: Sine wave b) RMS voltage V_{RMS} Answer: (0.32mV)*(0.707) = 0.23 mV

Answer: $T = 5.0 \mu s$

c) Period

Multiple Choice: In the following problems, choose the "best" answer.

3. (5 points) What is the capacitance of a capacitor if it can store 6.0 mC of charge when 78 V is applied across the plates?

a) 470 mF (b) 77 μ F c) 4.7 F d) 82 mF e) None of the above

4. (5 points) An AC current with amplitude 1mA is sent into a "step up" transformer with a turns ratio of 100. The current in the secondary is therefore (ideally)

a) 100 mA	b) 10 mA	
c) 0.1 mA	(d) 10 µA	e) None of the above

5. (5 points) The ratio of the charge on a capacitor to its capacitance is equal to the

- a) current through the capacitor (b) voltage across the capacitor
- c) impedance of the capacitor d) None of the above

6. (5 points) A 50 Ω resistor, 10nF capacitor and a 300mH inductor are connected in series and driven with a sine wave at 1kHz. Which component has the greatest impedance?				
a) the resistor	(b))the capacitor			
c) the inductor	d) the source	e) Impossible to determine		
7. (5 points) Direct current through a wire produces				
a) no magnetic field	b) an alterr	ating magnetic field.		
(c))a constant magnetic field. d) Both (b) and (c).				
 8. (5 points) In an LR circuit, measuring output voltage across the resistor results in a filter. a) low pass b) high pass c) bandpass d) short pass 				
9. (5 points) The region of a PN junction consisting of charged ions is called the				
a) no-current region. b) reverse breakdown region.				
c) barrier region.	(d) depletion region.			
10. (5 points) The forward voltage drop across a typical LED is arounda) 0.7 V.b) 0.3 V.c) 10 V.d) 2 V.				

11. (5 points) A typical semiconductor has _____ valence electrons.

a) zero	b) two
c)four	d) eight

Short Answer: In the following problems, remember to <u>show your work</u> and/or *explain your answer* in completing the calculations. An answer by itself will not receive credit. 12. (10 points) The last stage of a power supply for some piece of electronic gear uses a DC source of 8V to charge a capacitor of 11nF in series with a resistor of 2500 Ω . How long does it take for the capacitor to reach 63% of the source voltage?

$$V_{C} = V_{\max} \left(1 - e^{-\frac{t}{RC}} \right)$$

$$\frac{V_{C}}{V_{\max}} - 1 = -e^{-\frac{t}{RC}}$$

$$\ln \left(1 - \frac{V_{C}}{V_{\max}} \right) = -\frac{t}{RC}$$

$$t = -RC \ln \left(1 - \frac{V_{C}}{V_{\max}} \right) = -(2500\Omega)(11 \times 10^{-9} \text{F}) \ln(1 - 0.63)$$

$$t = 27 \text{ us}$$

13. (11 points) Draw a schematic for a DC power supply, consisting of a transformer, bridge rectifier, resistor and capacitor, and indicate where the output is measured from.

14. (10 points) The capacitors, $C_1=20\mu F$, $C_2=15\mu F$, and $C_3=10\mu F$, are connected in parallel.

a) If this parallel combination is connected to a 10V DC power supply and allowed to fully charge, what is the charge on *each* capacitor?

b) If this parallel capacitor combination is connected in series with a 20Ω resistor to a 100Hz AC source, find the total impedance.

Answer:

a)

b)

$$Q_{1} = VC_{1} = (10V)(20\mu F) = 200\mu C$$

$$Q_{2} = VC_{2} = (10V)(15\mu F) = 150\mu C$$

$$Q_{3} = VC_{3} = (10V)(10\mu F) = 100\mu C$$

$$C_{T} = C_{1} + C_{2} + C_{3} = 45\mu F$$

$$X_{C} = \frac{1}{2\pi f C_{T}} = \frac{1}{2\pi (100)(45 \times 10^{-6})} = 35.4\Omega$$

$$Z = \sqrt{R^{2} + X_{C}^{2}} = \sqrt{20^{2} + 35.4^{2}} = 40.7\Omega$$

Extra Credit:

(5 points) The capacitor in a certain condenser microphone has a variable plate separation. The voltage across the capacitor is kept at a constant 48V by phantom power. If the capacitor in its "default" separation has a capacitance of 30μ F and then the plate separation *decreases* by a factor of 2 in 2ms, find the current that flows.

$$I = \frac{\Delta Q}{\Delta t} = \frac{\Delta (CV)}{\Delta t} = V \frac{\Delta C}{\Delta t}$$

$$\Delta C = (C_f - C_i), \text{ and } C \propto \frac{1}{d}, \text{ so } C_f = 2C_i = 60\mu\text{F}$$

$$I = 48V \frac{(60\mu\text{F} - 30\mu\text{F})}{2\text{ms}} = 0.72A$$