## PHY2250 - Electronics & Circuit Theory, "Practice" Test 1

Charge on the electron:  $-1.602 \times 10^{-19} \text{ C}$ 

## Part I. Multiple Choice: For these questions, simply giving the answer will do, i.e. you do not need to show your work.

| 1. (4 points) One coulomb-per-second is equal to one:                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. watt b joule                                                                                                                                                                                                                                                                                          |
| c. volt d. ampere                                                                                                                                                                                                                                                                                        |
| 2. (4 points) Two resistors, $R_A$ & $R_B$ , are placed in parallel. If $R_A > R_B$ and a voltage is applied across this resistor combination, which resistor will dissipate more power?  a. $R_A$ b. $R_B$ c. They will dissipate the same amount of power                                              |
| d. Impossible to determine; need more information to answer                                                                                                                                                                                                                                              |
| <ul> <li>3. (4 points) How should one measure current and voltage in a circuit?</li> <li>a. both ammeter and voltmeter in series</li> <li>b. both ammeter and voltmeter in parallel</li> <li>c. ammeter in parallel, voltmeter in series</li> <li>d. ammeter in series, voltmeter in parallel</li> </ul> |
| 4. (4 points) What would be the voltage drop across two $25\Omega$ resistors in parallel if the source voltage were equal to $9V$ ?  a. $50V$ b. $25V$ c. $12V$ d. None of the above - It's just $9V$ .                                                                                                  |
| 5. (4 points) The smallest unit of an element is:  a. A compound c. An electron  d. A molecule                                                                                                                                                                                                           |
| 6. (4 points) The output voltage will always when a load is connected across a voltage divider.  a. decrease b. increase c. remain the same d. All of the above could be considered true.                                                                                                                |
| 7. (4 points) At the Grammys, Soulja Boy had a toaster connected to a power supply, with a given voltage and current. Amy Winehouse then connected her hair drier in series with the toaster (due to a poorly-designed power strip). When she did this, the voltage across Soulja's toasta'              |

## Part II. Definitions/Concepts:

8. (8 points) Rob G. has a favorite resistor to use, with the color bands Red, Orange, Blue and Gold. What is the value of Rob's favorite resistor (with tolerance)?

Answer: "2", "3", "6 zeroes" +/5% = 23 MegaOhms, +/5%

- 9. (8 points) The "200 mV" setting on a multimeter means what? In other words, when would you use such a setting? It measures voltages below 200mV. You would prefer its use over "larger" settings (e.g. 20V) to obtain more accurate readings below 200mV.
- 10. (8 points) Describe the two rules of Kirchoff which apply to circuit analysis. (Don't just name them; describe them)

## Part III. Problem Solving. \*SHOW ALL WORK\* to receive nonzero credit. When in doubt, explain what you're doing...

11. (12 points) If a battery develops 1.6V across its terminals when unloaded (i.e. not connected to anything), but only 1.5V when it is connected to a  $50-\Omega$  load, what is the internal resistance of the battery?

$$(1.6 \text{ V}) / R_T = (1.5 \text{ V}) / 50\Omega$$
,  $R_T = r + 50\Omega$   
 $1.6/1.5 * 50 \Omega = R_T = r + 50$   
 $50 * (1.6/1.5 - 1) = r = 3.33 \Omega$ 

- 12. (9 points) A particular AC signal is 3V peak to peak, with a period of 50μs.
  - a. What is the amplitude?  $A = V_{pp} / 2 = 3/2 = 1.5V$
  - b. What is the RMS voltage?  $V_{RMS} = A * 0.707 = 1.06 \text{ V}$
  - c. What is the frequency?  $f = 1/T = 1/(50 \text{ x } 10^{-6}) = 20,000 \text{ Hz}.$
- 13. (18 points) For the following circuit, find...



- a. the current through the 120- $\Omega$  resistor.
- b. the voltage across the 180- $\Omega$  resistor.
- c. the power dissipated by the the 1.5-k $\Omega$  resistor.

Answer: next page

Answer to #13:

First, find 
$$R_T$$
:  $R_{45}=(1/3300+1/2200)^{-1}=1320~\Omega$  
$$R_{245}=180+1320=1500~\Omega$$
 
$$R_{2345}~(1/1500~+1/1500)^{-1}=750~\Omega$$
 
$$R_T=R_1~+R_{2345}~+R_6=330+750+120=1200~\Omega$$

Then find  $I_T\colon\ I_T$  =  $V_T$  /  $R_T$  = 36 V / 1200  $\Omega$  = 0.03 A.

$$a. I_6 = I_T = 0.03A$$

b. 
$$V_2 = I_{245}\,R_{2,}$$
 where  $I_{245} = I_T * R_{2345}/\,R_{245} = 0.03 * 750/1500 = 0.015\,A$  
$$V_2 = 0.015A * 180~\Omega = 2.7~V$$

c. 
$$P_3 = I_3^2 R_3$$
, where by symmetry,  $I_3 = I_T / 2 = I_{245} = 0.015$  A  $P_3 = (0.015)^2 * 1500 = 0.3375$  W

15. (9 points) If  $1.8 \times 10^{10}$  electrons flow through a resistor in 100s when 20V is applied across it, what is the resistance?

$$R = V/I = V/(Q/t) = 20V/((1.8E10 \text{ electrons} * 1.602E-19 \text{ C/electron })/100 \text{ s})$$
 
$$= 20 \text{ V}/(2.88E-9 \text{ C}/100 \text{ s}) = 6.93 \text{ x } 10^{11} \text{ Ohms}$$