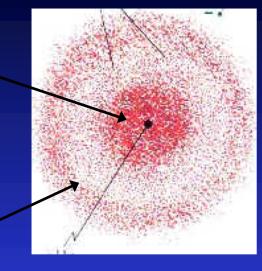
Supplement for Chapter 1: The Structure of Matter

PHY2250 - Electronics & Circuit Theory Dr. Hawley

Atoms


All the matter we'll be dealing with consists of combinations of different kinds of atoms. For a long time, people believed that an atom was the smallest, indivisible instance of an element -- some natural "essence" (e.g., "earth", "air", "fire", "water"). ■ There are over 100 different kinds of atoms/elements, and they're actually not indivisible, they have <u>parts</u>, i.e. "subatomic particles."

Atomic Structure

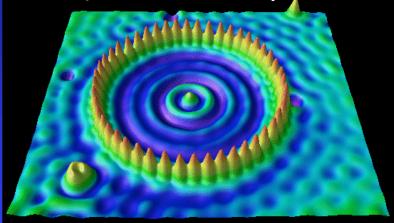
 $\leftarrow 10^{-10} \text{m} \rightarrow$

Nucleus: Heavy, almost entire mass of atom is here. Size ~10⁻¹⁵m

Electron(s): Tiny waves/ particles, around the nucleus in a "cloud"

(Do not "orbit" like planets," no "centrifugal force" on electrons!)
Atom is over 99.9% empty space!
Nucleus itself has constituents:

protons & neutrons.

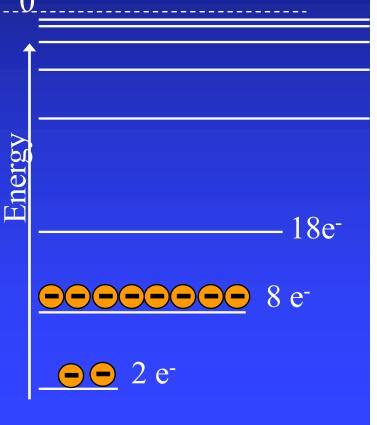

Electric Charge

- Protons & electrons have equal and opposite <u>electric charge</u>.
- Like charges repel, opposites attract.
- ("Strong" & "weak" forces overcome repulsion of protons, to hold nucleus together)

Particle	<u>Mass in AU*</u>	Charge in AU*
Proton	~1	+1
Neutron	~1	0
Electron	very small	-1
*1AU of mass =	1 67x10 ⁻²⁷ kg of cha	$rge = 1.602 \times 10^{-19} C$

Imaging Atoms

 Atoms are too small to "see" (smaller than wavelength of visible light), but they can be imaged, e.g. through Scanning Tunneling Microscopy.


What you "see" is the electric field from the outer electron "shell."

Electron Shells

Electrons in an atom can only exist at discrete <u>energy levels</u>, and each level only supports a certain number of electrons.

The electrons fill up the lowest level first, then the next-to-lowest, etc.

Often the symbol "e-" is used to denote electrons

Periodic Table of Elements

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 ¹ H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	Solid	Solid Metals						Nonmetals								к
2	3 ² Li Lithium 6.941	4 22 Be Beryllium 9.012182	Hg H	Liquid Gas		Alkaline earth metals Alkali metals		Lanthanoids		Poor metals	Other nonmetals	Noble gases		6 ² / ₄ C Carbon 12.0107	7 ² / ₅ N Nitrogen 14.0067	8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 27 F Fluorine 18.9984032	10 ² Ne Neon 20.1797	K L
3	11 28 Na Sodium 22.98976928	12 2 Mg Magnesium 24.3050	Rf	Unknow	'n	tals	lais /	Actinoids		lais s	<u>v</u>	Ses	13 28 3 Al Aluminium 28.9815388	14 ² Si Silicon 28.0855	15 28 P Phosphorus 30.973762	16 ² S Sulfur 32.085	17 28 CI Chlorine 35.453	18 28 Ar Argon 39.948	K L M
4	19 ² K ¹ Potassium 39.0983	20 28 Ca Calcium 40.078	21 28 Scandium 44.955912	22 28 Ti ¹⁰ ² ¹⁰ ² ¹⁰ ² ² ¹⁰ ²	23 28 V 11 Vanadium 50.9415	24 28 Cr 13 Chromium 51.9961	25 Mn Manganese 54.938045	26 26 28 Fe 14 Iron 55.845	27 28 Co Cobalt 58.933195	28 28 Ni ¹⁶ Nickel 58.6934	29 28 Cu 18 Copper 63.546	30 ² Zn ² ¹⁸ ² ² ^{65.38}	31 28 18 3 Gallium 69.723	32 28 Gemanium 72.84	33 ² As ¹⁸ ⁵ ⁴ ^{74.92160}	34 28 Seenium 78.96	35 28 Br ¹⁸ Bromine 79.904	36 Kr Krypton 83.798	KLMN
5	37 28 Rb 18 Rubidium 85.4678	38 28 Sr Strontium 87.62	39 28 Y 92 Yttrium 88.90585	40 28 Zr 10 21:conium 91.224	41 28 Nb 18 Niobium 92.90838	42 2 Mo 13 Molybdenum 95.96	43 Tc Technetium (97.9072)	44 28 Ru 18 Ruthenium 101.07	45 28 Rh 16 102.90550	46 28 Pd 18 Palladium 108.42	47 28 Ag 18 Silver 107.8882	48 28 Cd 18 Cadmium 112.411	49 28 In 18 Indium 114.818	50 28 Sn 18 18 18 18 18 18 18 18 18 18	51 28 Sb 18 18 18 18 18 18 18 18 18 18	52 28 Te 18 18 18 18 18 18 18 18 18 18 18 18 18 1	53 2 18 18 18 7 Iodine 126.90447	54 2 Xe 18 Xenon 131.293	KLMNO
6	55 2 Cs 18 Caesium 1 132.9054519	56 2 Ba 18 Barium 2 137.327	57–71	72 2 Hf 32 Hafnium 2 178.49	73 28 Ta 180.94788	74 2 W 183.84	75 Re ¹³ ¹⁴ ¹⁵ ¹⁸ ¹⁸	76 05 05 05 05 18 32 14 2 19 19 23 18 32 14 2 14 2 19 10 10 10 10 10 10 10 10 10 10	77 2 Ir 18 17 15 17 192.217	78 2 Pt 32 Platinum 1 195.084	79 2 8 Au 18 Gold 1 196.966569	80 2 8 Hg 18 Mercury 200.59	81 28 TI 18 18 32 18 32 18 3 204.3833	82 2 Pb 32 18 Lead 4 207.2	83 2 8 Bi 18 18 18 18 18 18 18 208,98040	84 2 Po Polonium (208.9824)	85 2 At 18 Astatine 7 (209.9871)	86 2 8 Rn 18 Radon (222.0176)	K L M N O P
7	87 2 Fr 32 Francium 1 (223)	88 2 Ra 32 18 Radium 2 (228)	89–103	104 2 Rf 32 Rutherfordium 10 (281)	105 28 Db 322 Dubnium 211 (282)	106 2 Sg 32 Seaborgium 12 (288) 22	107 Bh 33 Bohrium (284)	108 ² Hs ¹⁸ Hassium ¹⁸ ²² (277) ¹²	109 2 Mt 32 Meitnerium 15 (288)	110 2 Ds 32 Darmstadtium 1 (271) 1	111 28 Rg 32 Roentgenium 18 (272)	112 Uub Ununbium (285) 2 2 2 2 2 2 2 2 2 2 2 2 2	113 Uut Ununtrium (284) 2 8 18 18 3 2 8 18 18 3 18 18 18 18 18 18 18 18 18 18	114 28 Uuq 32 Ununquadium 14 (289)	115 28 Uup 32 Unurpentium 18 (288)	116 Uuh Ununhexium (292) 28 18 22 32 18 29 22 18 22 22 22 22 22 22 22 22 22 2	117 Uus Ururseptum	118 28 Uuo 32 Ununoctium 18 (294)	K-MNORG
				F	For elem	ents wit	h no sta	ble isoto	pes, the	mass n	umber o	f the iso	tope with	n the lon	gest half	-life is ir	n parenth	neses.	

D4	hla
	ipie
	.com

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/														
57 2 La 18 Lanthanum 2 138.90547	58 28 Ce 19 Cerium 2 140.116	59 2 Pr 21 Praseodymium 140.90765	60 28 Nd 182 Neodymium 144.242	61 28 Pm 23 Promethium 23 2 2 2 2 2 2 2 2 2 2 2 2 2	62 2 Sm 24 Samarium 2 150.36	63 2 Eu 25 Europium 2 151.964	64 2 Gd 25 9 2 2 2 2 2 2 2 2 2 2 2 2 2	65 2 Tb 28 18 18 27 8 2 158.92535	66 28 Dy Dysprosium 162.500	67 28 Ho 18 Holmium 164.93032	68 2 Er 30 Erbium 2 167.259	69 28 Tm 18 31 168.93421	70 2 Yb 32 Ytterbium 2 173.054	71 Lu Lutetium 174.9888
89 ² Ac ¹⁵ Actinium ⁹ (227) ²	90 28 Th 18 322 18 10 232.03806	91 28 Pa 20 Protactinium 92 231.03588	92 28 U 18 Uranium 9 238.02891	93 ² Np ¹⁸ Neptunium ⁹ (237) ²	94 28 Pu 24 Plutonium 22 (244)	95 28 Am 18 Americium 22 (243) 25	96 28 Cm 225 Curium 9 (247) 2	97 28 Bk 18 Berkelium 2 (247) 2	98 28 Cf 322 Californium 2 (251)	99 28 Es 29 Einsteinium 2 (252) 28	100 2 Fm 322 5 5 5 5 5 5 5 5 5 5 5 5 5	101 28 Md 322 Mendelevium 2 (258)	102 2 No 322 Nobelium 2 (259) 2	103 Lr 33 Lawrencium (282)

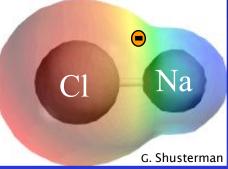
Atomic Number & e⁻ Shells

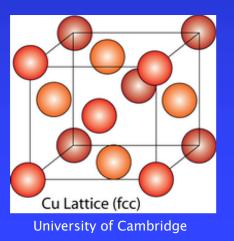
- The number of protons in an atom -- called the <u>atomic number</u> -- determines how many electrons an (electrically) neutral atom can "hold."
- This determines how many shells are filled and to what extent.
- The # of electrons in the highest energy shell (often called the "valence" shell) is largely responsible for the <u>chemical</u> <u>properties</u> of the atom or element, i.e. how the atom combines with other atoms...

Shells & Properties

 Filled shells tend to correspond to chemically <u>inert</u> (non-reacting) elements, e.g. noble gasses (Helium, Neon...)

Almost-filled shells "prefer" to get another e⁻ to fill them, & tend to produce a negative ion (charged atom), e.g. Chlorine: Cl⁻

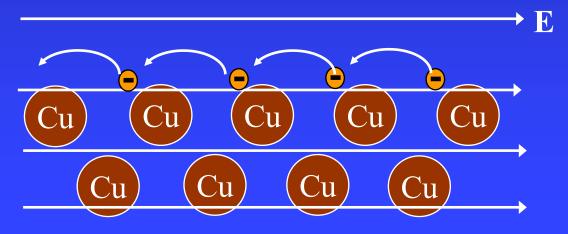

Shells w/ only one e⁻ tend to lose it easily, producing positive ions, e.g. Sodium: Na⁺


Semiconductors possess valence shells which are "half full," with 4 electrons.

Electron Sharing

Atoms can <u>share</u> electrons, forming chemical bonds and becoming a <u>molecule</u>.
 e.g., sodium & chlorine can share 1 e⁻, becoming NaCl -- salt.

In a metallic <u>conductor</u> like copper (Cu), atoms are arranged in a crystal or lattice, and electrons are easily shared throughout the entire metal



Electron Gas Model of Conductors

In fact, the electrons are so easily shared between atoms in a conductor, they can actually be modeled as an "electron gas" in the conductor.

Electrons will jump <u>freely</u> from atom to atom in the presence of an applied <u>electric</u> <u>field</u>.

...Voltage and Current!

A difference in electric potential across opposite sides of a conductor will produce such an electric field in the conductor. An electric <u>potential difference</u> is called <u>voltage</u>, measured in Volts.

This will cause electrons to jump from atom to atom, resulting in an <u>electric current!</u>
Current is defined as charge per unit time.
1 Coulomb (C) flowing in 1 second (s) is a current of 1 Ampere (Amp or A) 1 Amp = 1 C/s

