PHY2250 Electronics & Circuit Theory Dr. Hawley

Series RLC Filters and Geometry
or
The Mighty Impedance Diagram!
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The impedance diagram on the left and the voltage diagram on the right will always be
geometrically similar, meaning that all angles will be the same, and the relative lengths of
vectors will be the same. In the following, we will draw the voltage diagram at a scale larger
than that of the impedance diagram, just to emphasize this “similarity” property.
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Where, for a given frequency f, the lengths of the reactance vectors are X; = 2mfL and
Xc =1/(2nfC). (Note that we have drawn these diagrams assuming the inductor has a larger
contribution than the capcitor, but the lengths may be different in general.)

Because of similarity, relative lengths are the same. So for example,
R Vg
X, v

If we want to include the total impedance Z; and total voltage V,, these are simply the vector
sums of their corresponding parts, i.e.
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Zr=R+Xc+X,

Vr=Ve+Ve+Vp
as shown in the diagrams:

Where similarity tells us that @ is the same in both diagrams.
into mere triangles, which we will “zoom in” on:
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Let us reduce the above diagrams

ViL-Vc

where vertical bars denote absolute value. (Note that we’ve drawn the triangles “upward,” but
they could just as easily be drawn “downward” for X, > X,.) Using these triangles, let’s write

out a few trigonometric identities:

Zr =\/R2 +(XL_XC)2 Vr Z\/VRZ + (V. _Vc)z
R Vi
8 = —_— = —*
cos Z v
. X, — X¢ Vi, = Ve
sinf = =
Zy Vr
X, — X¢ Vi, = Ve
tanf@ = =
an R v

The angle 6 will be positive or negative depending on whether the total voltage is leading (+) or

lagging (-) the current.

*Note that this is just a “voltage divider” formula, with Rrreplaced by Zr.
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Example: Bandpass Filter

Say we measure the voltage across the resistor, i.e. we attach our “output” in series with L and
C. The voltage gain G (or “transfer function”) of a filter is given by G = V,,,,+/Vin, and in this
case V, = Vg and V;;, = V. So our G is simply

Using the impedance side of the diagrams above: Vi /V; = R/Zr. Thus G is
R
G =
VR + (X, — X¢)?
Let’s pretty this up: Multiply both the denominator and the numerator by 1/R to find

; 12 2 -1/2
on e ol

Then we can group “variables that are not f” into two new variables f; and f, such that

B 1
fi= 2mRC
and
_ R
fa= 2L
With these substitutions, we arrive at
-1/2
ol (Y
o AV ()

To see this in action, let’s choose some values: R =8 €, f; = 100 Hz and f, = 1000 Hz. Our
choice of f; means that C = 199 uF and our choice of f, means that L = 1.27 mH. (Check: derive
these values yourself!) The graph below shows a Bode (log-log) plot of the gain vs. frequency:
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Note that if f; -0
(C - ), we have
purely a high pass
filter, and if f, —» ©©
(L—>0) we have
purely a low pass
filter. Thus Eq. (1)
includes low-, high-,
and band-pass filters.

This result is only one example of the many things you can figure out using an impedance

diagram and trigonometry!

Exercise: For the values in the above example, find f for which the total impedance is purely

resistive, i.e., Zr = R. What is the gain at this frequency? Answers below.

T What is often of interest may not be the voltage per se but rather the power, the gain for which will be the
square of G. Thus the slope of the “sides” for the power graph will be +/-2, not +/-1 as above.

I=9“ZHO9IE !S.IBMSUV_L

Page 3 of 3




