PHY2250 - Electronics \& Circuit Theory, Spring '09 Final Exam

Name:
Turn off (OFF) all cell phones
Answer on these papers

Part I (72 points): Circle the "best" answer. No need to show your work.

1. (4 points) The smallest unit of an element is: (circle one)
a) An electron
b) A molecule
c) A compound
d) An atom
2. (4 points) In a series RC circuit:
a) The current flowing in the circuit lags the voltage across the capacitor by 90 degrees.
b) The circuit current and resistor voltage are in phase with one another
c) The current leads the voltage by 45 degrees
d) All of the above
e) Both (a) and (b), but not (c)
3. (4 points) What are the majority carriers in an N-type semiconductor?
a) Positrons
b) Electrons
c) Holes
d) Protons
4. (4 points) The following diagram of a diode and variable resistor can serve as a model of what electronic component? (circle one)
a) capacitor
b) op-amp
c) transistor
d) regulator

5. (4 points) The op-amp circuit shown the right is a/an (circle one)
a) Closed-loop noninverting amplifier
b) Active high-pass filter
c) Open-loop signal generator
d) Closed-loop inverting amplifier

Los Angles, CA. In a drug deal gone horribly wrong, rising hip-hop star "KillahWatt" lodged his "grill" across the output terminals of a step-down transformer putting out 20A at 240V RMS.
6. (4 points) Calculate the average power coursing through his grill.
a) 12 W
b) 120 W
c) 2880 W
d) 4800 W
7. (4 points) Calculate the impedance of said grill.
a) 2Ω
b) 8Ω
c) 12Ω
d) 4800Ω

Nashville, TN. Honky-tonk legend Dwayne Rufus McGathright decides to lick the two contacts of a parallel plate capacitor. "The dang thing's only been charged to 5 Volts!" he exclaims with confidence. Unfortunately it is a 1 F capacitor.
8. (4 points) Calculate the charge on the capacitor prior to said licking.
a) 0.2 C
b) 1 C
c) 5 C
d) 10 C
e) None of the above
9. (4 points) If McGathright's tongue's resistance is $10,000 \Omega$, calculate the time it takes for the capacitor to discharge to 1 V .
a) 4.5 hours
b) 7.6 hours
c) 2.2 days
d) Over a week
e) None of the above

Springfield, USA. Three lovable, misfit squirrels bridge the two wires of a DC high-voltage line, forming a circuit as shown below. The three squirrels, "Blacky," "Sparky" and "Crispy" are represented as resistors R_{1}, R_{2} and R_{3}, respectively. In this circuit, $V_{S}=10,000 \mathrm{~V}(D C), R_{1}=40 \mathrm{k} \Omega$, $\mathrm{R}_{2}=30 \mathrm{k} \Omega$ and $\mathrm{R}_{3}=60 \mathrm{k} \Omega \ldots$
10. (4 points) Find the power dissipated by Blacky's body.
a) 1670 W
b) 3300 W
c) 6700 W
d) 8600 W
e) None of the above

11. (4 points) A transformer has 100 turns on the primary and 400 turns on the secondary. If a 10 V signal is found on the secondary, what is the voltage on the primary?
a) 2 V
b) 2.5 V
c) 4 V
d) 6 V

Two sine wave signals of frequency 500 Hz and amplitude 2 V are added together, but one is timedelayed by 500μ s with respect to the other.
12. (4 points) What is the phase shift between the two signals?
a) 45°
b) 90°
c) 180°
d) 270°
e) None of the above
13. (4 points) What is the amplitude of the resulting summed signal?
a) 0 V
b) 1.4 V
c) 2.8 V
d) 4 V
e) None of the above
14. (4 points) The capacitor any condenser microphone has a variable plate separation. The voltage across the capacitor is kept at a constant 48 V by phantom power. If one such a capacitor in its "default" separation has a capacitance of $13 \mu \mathrm{~F}$ and then the plate separation decreases by a factor of 2 in 9 ms , find the current that flows.
a) 70 mA
b) 140 mA
c) 35 mA
d) 22 mA
e) None of the above
15. (4 points) Rob G. has a favorite resistor to use, with the color bands Red, Orange, Blue and Gold. What is the value of Rob's favorite resistor (with tolerance)?
a) $12 \mathrm{M} \Omega \pm 5 \%$
b) $120 \mathrm{k} \Omega \pm 5 \%$
c) $120 \mathrm{k} \Omega \pm 10 \%$
d) $23 \mathrm{M} \Omega \pm 5 \%$
e) None of the above

Regarding the following oscilloscope trace, what are... 16. (4 points) the amplitude
a) 50 mV
b) 100 mV
b) 125 mV
d) 150 mV
17. (4 points) the frequency
a) $8.4 \mu \mathrm{~s}$
b) $16 \mu \mathrm{~s}$
c) $32 \mu \mathrm{~s}$
d) $154 \mu \mathrm{~s}$

Settings:
$50 \mathrm{mV} / \mathrm{div}$
$10 \mu \mathrm{~s} / \mathrm{div}$

Part II: Short Answer (28 points): Answer the following and show any relevant work.
19. (6 points) Describe the difference(s) and similarity(/ies) between "resistance" and "impedance".
"A Simple Amplifier. Again!" In the following circuit, use the values $\mathrm{R}_{1}=8 \mathrm{k} \Omega, \mathrm{R}_{2}=4 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=$ $200 \Omega, \mathrm{R}_{\mathrm{E}}=100 \Omega$, and $\mathrm{R}_{\mathrm{L}}=\infty$. Questions 20 to 22 deal with the DC "Q point" of the amplifier...

20. (4 points) What is the value of V_{B} ?
21. (4 points) What is the value of I_{E} ?
22. (4 points) If $\beta_{\mathrm{DC}}=50$, what is V_{C} ?
23. (10 points) In the following "pseudo-cue-system," three instrument channels are placed in parallel, and each channel has a volume knob (represented by variable resistors).

a) Say the guitar channel's volume knob is "all the way on", i.e. zero resistance, and the other two volume knobs are turned "off," i.e. "infinite" resistance. What is...
...the total current?
...the current that flows through the guitar channel?
...the voltage across the guitar?
b) Now suppose the bass channel's knob is also turned all the way on....

What is the total current?
What is the current through the guitar channel?
What is the voltage across the guitar?

Extra Credit:

10. (2 points) Which recording industry pioneer "accidentally" created the first diode, but could not see any practical application of it?
