PHY2250, Dr. Hawley

A Method to Design the Q Point (DC Operation) of a Transistor Amplifier

First Exercise: Here are values for the DC part of one amp Dr. Hawley designed using the method described below: $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \beta_{\mathrm{DC}}=150, \mathrm{R}_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{2}=1650 \Omega, \mathrm{R}_{\mathrm{C}}=500 \Omega, \mathrm{R}_{\mathrm{E}}=$ 99Ω. Work "forwards": Find $V_{B}, V_{E}, I_{E}, I_{C Q}, V_{C}, V_{C E Q}, I_{C(S a t)}$ and draw the $D C$ load line. Compare your answers with those on the back side of this sheet.

Second Exercise: You and a partner design your own (DC part of an) amplifier using the steps below ("The Design Method") on a sheet of paper. Then exchange only resistor and β values, and $V_{C C}$, with your neighbors and each group try to solve the others' problem - i.e. solve for voltages and currents given resistor values, β_{DC} and $V_{C C}$. Check your answers with the other group.

The Design Method: We're going to work "backwards" from the desired end-state to the choice of resistors.

1. Choose V_{CC}, typically 5 to 20 V .
2. Choose V_{C}, a volt or more higher than half $V_{C C}$
3. Choose $V_{C E Q}$, equal to or a bit less than half $V_{C C}$
4. Choose I_{C}, typically 10 to 80 mA
5. Choose β_{DC}, typically 50 to 200.
6. Choose R_{2}, typically in the $k \Omega$ or tens of $k \Omega$ range
7. Calculate R_{C} using $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{CQ}} \mathrm{R}_{\mathrm{C}}$ and solving for R_{C}
8. Calculate $\mathrm{V}_{\mathrm{E}},=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\text {CEQ }}$
9. Calculate I_{E} using $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{CQ}}\left(\beta_{\mathrm{DC}}+1\right) / \beta_{\mathrm{DC}}$
10. Use Ohm's Law to find R_{E}
11. Calculate $\mathrm{I}_{\mathrm{C}(\mathrm{Sat)}}$ by assuming $\mathrm{V}_{\mathrm{CE}}=0$, using $\mathrm{V}_{\mathrm{C}}, \mathrm{R}_{\mathrm{C}}$ and R_{E} in series.
12. Draw the DC load line for the circuit, and show the Q point.
13. Use $V_{B}=V_{E}+0.7 \mathrm{~V}$
14. Write the voltage divider formula for V_{B}, and solve for R_{1} given $V_{C C}, V_{B}\left(=V_{2}\right)$ and R_{2}.
15. Draw the schematic, label it, and work "forwards" to verify your values.
