PHY2250, Electronics \& Circuit Theory Activity: Parallel Circuits

Work in groups of three (or two). You may refer to your notes and your textbook.

1. If resistors of values $10 \Omega, 40 \Omega$ and 8Ω are in parallel, calculate the total conductance in Siemens (S).
2. In the figure below, $\mathrm{V}_{\mathrm{s}}=100 \mathrm{~V}, \mathrm{R} 1=30 \Omega, \mathrm{R}_{2}=20 \Omega$, and $\mathrm{R}_{3}=60 \Omega$.
a. Find the branch currents I_{1}, I_{2}, and I_{3}.
b. Find the total resistance.
c. Using Ohm's Law and the answer to part b, find the total current.
d. Show that the total current equals the sum of the branch currents.

3. The current divider formula. For a simple circuit consisting of two resistors R_{1} and R_{2} in parallel, and source of total current $I_{T}\left(=V_{S} / R_{T}\right)$, find the current through R_{2} as a function of I_{T}, R_{1} and R_{2}.
4. Answer "Troubleshooting challenge" question 5-66 in the text. (You may answer on the back of this page).
