PHY2250, Electronics \& Circuit Theory
 \section*{Activity: Series Circuits}

Work in groups of three (or two). You may refer to your notes and your textbook.

1. Using Ohm's Law and the fact that current in a series circuit is the same everywhere, show (i.e. prove) that the total resistance of three resistors in series is the same as the sum of the individual resistances.
2. Referring to the schematic below, find a formula for V_{2}, the voltage across R_{2}, as a function of (only) the source voltage V_{S} and the values R_{1} and R_{2}. (This is known as the "Voltage Divider" formula, and will be crucial to analyzing many circuits in this course.)

3. How would your answer to \#2 (above) change if there were a third resistor in series with the other two, i.e. what would the formula for V_{2} be?
4. Referring to the schematic in $\# 2$, if $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}, \mathrm{R}_{1}=100 \Omega$ and $\mathrm{R}_{2}=250 \Omega \ldots$
a. What is the total power in the circuit?
b. What is the power dissipated by R_{1} ?
