
PHY2010: Simple Harmonic Motion 
 
Simple Harmonic Motion (SHM) is an indispensable paradigm for understanding a wide 
variety of physical phenomena, including much of acoustics. 
 
The canonical system demonstrating SHM is a mass m connected to a spring with spring 
constant k:   
 
 

 
 

Figure 1: The canonical simple harmonic oscillator, a mass on a spring. 
 
The force due to the spring is described by Hooke's Law, F = -kx, where x is the 
displacement from equilibrium.   Note that via Newton's Second Law, F = ma, one can 
relate the acceleration a to the displacement x, 

€ 

−kx = ma
a + (k /m)x = 0.

 

 
If we consider that a is “the time rate of change of the time rate of change” of x, then the 
function x(t) which satisfies the above equation is a sine or a cosine function, such as: 
 
 

€ 

x( t) = A cos(ω0t + φ), (1) 
 
where A is a (constant) amplitude, and the value 

€ 

ω 0 is the natural “angular frequency” of 
the oscillator, in radians per second. The variable φ in the equation for x(t) is a constant 
angle or “phase,” describing what the oscillator does at time  t = 0.  (Note that for 
φ = −π/2, the function x(t) can be written 
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x(t) = Asin(ω 0t) .) 
 
The value of 

€ 

ω 0  is the square root of k/m that appeared in Newton’s Second Law,   

€ 

ω0 =
k
m

 (natural angular freq.), 

 
and is related to the natural frequency f0 in Hertz via 
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ω0=2π f0: 
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f0 =
1
2π

k
m

  (natural freq. in Hz). 

 
 
Damped Oscillations 
The presence of friction in the system causes the dissipation of energy from the oscillator.  
The oscillator must do work against friction as the mass moves back and forth, and this 
causes energy to leave the oscillator as it gets converted into heat.  This leads to an 
exponential decay of the amplitude as a function of time, shown in Figure 2 below. This 
is also known as the impulse response or transient response of the oscillator: if you "hit" 
it briefly, it will oscillate at its natural frequency 
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ω0 and damp out. 
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Figure 2: Impulse or “transient” response of a damped oscillator.  
 
 
Driven, Damped Oscillations 
If you drive the system with a force that oscillates at (some other) frequency f, then the 
system will oscillate at the driving frequency.  The presence of the driving force means 
that energy can be continually added to the system (while it is being dissipated by the 
damping) and we will have a steady state oscillation (which doesn't decay), in which the 
amplitude A will be a function of the driving frequency, i.e. A(f), as shown in Figure 3. 

 
Figure 3: Steady-state response of a driven damped oscillator.  The 

solid line shows little damping, the dashed line shows much damping. 
 

The maximum amplitude occurs when f = f0, which is known as resonance.   In other 
words, resonance occurs when the frequency of the driving force is equal to the natural 
oscillation frequency of the system. 
 
The Q Factor 
For any damped oscillator, the rate at which energy is dissipated from the system is 
related to the amount of damping.  One way of describing the amount of damping 
quantitatively is via the (dimensionless) Q factor or “quality” factor, which is equal to the 
energy stored in the oscillator a given time divided by the energy lost in one cycle (times 
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e−γt  
x(t) 

t 
€ 

x(t) = Ae−γt cos(ω 0t)



a factor of 2π which we won’t worry about here.)  Thus a large Q denotes small damping, 
and vice versa.    
 
Another way of defining the Q factor, which is equivalent to the first way when the 
damping is weak enough (and in acoustics this is typically the case), is by the “width” of 
the “resonance” peak in the steady-state response graph.   For this, we actually graph the 
energy E in the oscillator as a function of the driving frequency f, and then define Δf to be 
the “full width at half max” of the E vs. f graph,  as shown in Figure 4. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Defining Δf, the full width at half the maximum energy. 

 
The Q value is then given by 
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Q =
f0
Δf

. 
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