PHY2010 HW 6. Dr. Hawley's Answers

1. Match the following acoustical concepts with their definitions

Liveness – h .	a. First reflected sound arrives <20ms after direct
Shadows – j.	b. Large reflected sounds which yield poor texture
Texture $-\mathbf{f}$.	c. Results from reflections off curved walls
Brilliance – g.	d. Results from poor acoustical isolation from environment
Clarity – i.	e. Intensity of reflected sound is high rel. to that of direct
Focusing – c.	f. Temporal pattern of sounds; good is a smooth decay
Fullness – e.	g. Reverb time of low end is shorter than normal
Blend – k.	h. Physically measurable reverb time
External noise – d.	i. Intensity of reflected sound is low rel. to that of direct
Intimacy – a.	j. Regions with poor high end mix due to obstructions
Echoes $-\mathbf{b}$.	k. Quality of the mix of instruments throughout the
	audience

2. You're building a church with a "rectangular barn" sanctuary with sides 100ft × 50ft × 40ft. Choose the value closest to the "ideal" reverberation time: (Hint: You can "read" this off Figure 8-4 in the text.)

a. 1.5 s	b. 2.2 s	
c. 1.0 s	d. 1.9 s	e. 1.7 s

3. Your home studio is 10ft x 12ft x 8ft. What are the frequencies of the five *lowest-frequency* room modes? (Use 1130 ft/s for the speed of sound.)

			Freq.
nx	ny	nz	(Hz)
0	0	1	70.6
0	1	0	47.1
1	0	0	56.5
0	0	2	141.3
0	1	1	84.9
0	2	0	94.2
1	0	1	90.4
1	1	0	73.5

- 4. Chim E. Changa's Restaurant & Kiddie Fun Zone* features a large Romper Room which is 50 feet long, 25 feet wide and 12 feet high.
 - a. The floor is made of tile (a=0.08) and walls and ceiling are made of plasterboard (a=0.10). If you also add in the absorption due to 50 children, with an absorption of 2.1 Sabins each, what is the reverb time in the Romper Room?

$$T_R = \frac{0.050(50)(25)(12)}{(0.08)(50)(25) + (0.10)[2(50)(12) + 2(25)(12) + (50)(25)] + (50)(2.1Sab)}$$
$$= \frac{0.050(15000)}{510} = 1.47 \approx 1.5 \text{ sec}$$

b. In response to a class-action lawsuit from employees who claim hearing damage from the *deafening* reverberant noise of shrieking, bean-encrusted young'uns, the management has decided to add absorption in the form of acoustical board (a=0.80) on the ceiling, and curtains (a=0.35) along both long walls. What will the new reverberation time be?

$$T_R = \frac{0.050(50)(25)(12)}{(0.08)(50)(25) + (.80)(50)(25) + (0.10)[2(25)(12)] + (0.35)(2)(50)(12) + (50)(2.1Sab)}$$
$$= \frac{0.050(15000)}{1685} = 0.45 \sec$$

*cf. "Kickin' It Old Skool," starring Jamie Kennedy