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ABSTRACT

We investigate the construction of latent spaces through self-supervised learning to support semantically meaningful
operations. Analogous to operational amplifiers, these "operational latent spaces" (OpLaS) not only demonstrate
semantic structure such as clustering but also support common transformational operations with inherent semantic
meaning. Some operational latent spaces are found to have arisen “unintentionally"” in the progress toward some
(other) self-supervised learning objective, in which unintended but still useful properties are discovered among the
relationships of points in the space. Other spaces may be constructed “intentionally" by developers stipulating
certain kinds of clustering or transformations intended to produce the desired structure. We focus on the intentional
creation of operational latent spaces via self-supervised learning, including the introduction of rotation operators
via a novel “FILMR” layer, which can be used to enable ring-like symmetries found in some musical constructions.

1 Introduction well-known equation "king" - "man" + "woman" =
"queen" from Word2Vec [1] exemplifies how these vec-
tors capture semantic relationships. Similarly, it has

been observed that vectors representing countries and

Self-supervised learning has emerged as a powerful
tool for uncovering latent representations within data.

These latent spaces, often high-dimensional, capture
the underlying structure of the data in a way that can be
surprisingly meaningful. Notably, some latent spaces
exhibit the remarkable property of supporting transfor-
mations that correspond to real-world manipulations
with semantic interpretations. These transformations
can often be expressed as translations or scaling within
the space, allowing for intuitive control over the data.

Examples of this can be found in natural language pro-
cessing, where algebraic manipulations of word vectors
can encode complex relationships. For instance, the

their capitals often lie along parallel lines within the
latent space, reflecting a clear geometric relationship.
These geometric relationships were not necessarily in-
tended but were later explained as having arisen due
to the use of matrix factorization in the optimization
objective [2]. Matrix factorization was then explicitly
used as an objective to encourage semantic geometric
structures in subsequent models. Matrix factorization is
employed in style transfer systems [3, 4], as factoriza-
tion is one mechanism for disentangling representations

[S].
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Disentangled representation learning, where the latent
space factors correspond to independent aspects of the
data, is another promising approach for achieving con-
trollable music generation [6, 7]. Recent work has also
explored leveraging relative positioning within the la-
tent space to control audio effects [8]. In the image
domain, StyleGAN and StyleGAN2 were built upon
the premise of disentangling controls of image genera-
tion. It was later discovered [9] that many other types
of possible controls are “latent” within StyleGAN be-
yond what it was originally intended for, including
controls for subjective criteria such as “fluffiness." The
potential to unlock new semantic controls within audio,
using the latent space of pre-trained audio models has
received some preliminary attention [10] but the spaces
were found to be highly nonlinear, even for linear audio
transformations high as high-pass or low-pass filtering.
Thus, we may wish to modify the existing latent space
of the pretrained model to support the operations we
wish to perform, using projective methods such as Sim-
CLR [11] or VICReg [12], which have proved to be
powerful tools for self-supervised representation learn-
ing.

This paper investigates the potential for self-supervised
learning applied to the latent spaces of pretrained audio
encoding models to create interpretable latent spaces
that empower music producers with fine-grained con-
trol over generative models. We present our approach,
evaluate its effectiveness, and discuss the implications
for fostering creative expression within music produc-
tion. We consider the effects of enforcing algebraic
structures onto the geometry of the latent space, ap-
plied through metric learning losses in self-supervised
ways. This work bears similarity with some work on
“task arithmetic” [13, 14], and the desire to exploit
symmetries [? ] to achieve musically relevant data
transformations, yet offers a different set of tasks and
mechanisms.

In Section 2, we seek to recover a vector space for
music mixing in the latent domain. In Section 3, we
go beyond translations and scaling to include rotations
among the operations used to provide semantic relation-
ships between data points. We provide supplemental
materials and code via a companion website!.

2 Example 1: Mixing in Latent Space

In typical linear mixing environments such as in the
time or spectral (i.e. Fourier) domains, the “mix” is

'Demo & code: https://drscotthawley.github.io/oplas
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Fig. 1: Encoded stems and mixes from the MUSDB18
[17] audio dataset using the VGGish (top row) and
CLAP (bottom row) pretrained encoding models, vi-
sualized using PCA (left column) and UMAP (right
column). We see that while different stems encode to
similar locations, their sums (brown markers) are far
from the mix encodings (purple markers), illustrating
the nonlinearity of these encoding models.

simply a weighted sum of the component musical parts.
Neural network systems for audio processing, however,
typically incorporate nonlinear transformations which
may prevent the sums of neural activations from accu-
rately representing the audio mix. How “nonlinear" are
typical neural audio embeddings? In Figure 1, we take
various stem components from the MUSDB18 dataset,
sum them, and encode them into latent space using
VGGish [15] and CLAP [16].

We consider a “toy model” of points in two dimensions,
generating (neural) embeddings via some example non-
linear process, and wish to accomplish the following:
find a “projector” mapping h from the embedding do-
main into another domain in which the sum of the em-
beddings lies arbitrarily close to the embedding of the
full musical mix. We could/zﬂso require that & possess
an (approximate) inverse h~! which would allow the
projective space to comprise a “latent plugin” for the
pretrained given model f.

Figure 2 illustrates a schematic for the neural network
architecture used, similar to the setup of VICReg [12]
yet applied to a new purpose.

This preliminary toy study suggests that semantic au-
dio transformations in latent space may be constructed
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Fig. 2: Mixing with embeddings. a) Flowchart of the algorithm, inspired by a similar flowchart from the VICReg
paper [12] shown in b) for comparison. c) Implementation using two classes of 2-D "dots” as proxies for audio
stems. The sum of the stems x; appears in the bottom left in green as the “mix”. In the middle column, we
apply some nonlinear twisting and leveling to the “dots” in the left column. In the bottom right, the sums of the
embeddings (purple shapes) lie right on top of the embeddings of the mixes (green shapes). Finally, the yellow dots
in the bottom middle covering the green dots confirm that we have learned an invertible mapping.
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Fig. 3: Mixing in latent space: subtracting the “drums”
vector. Here, the signals denoted by “vocal,” “bass,
“drums” and their time-domain sum “mix* are first em-
bedded in a space Y and then projected into Z. We
then compare the projected vectors for the mix without
the drums (in the time domain) shown in orange with
the “audio algebra” result of subtracting the vector for
“drums* from the “mix* vector. We see that these are
very close to each other in the projected space Z.

]

explicitly using self-supervised representation learning
techniques. Similar studies using real audio encoded
via VGGish and/or CLAP models are currently un-
derway but are incomplete at the time of manuscript
submission.

3 Example 2: Enabling Rotations

Beyond the FiLM layers [18], which learn abelian trans-
formations, we can try adding rotations, which may
lead to additional (and perhaps powerful) semantic op-
erations. We refer to such layers as “FILMR” layers
with the “R” denoting the inclusion of rotation trans-
formations. To illustrate the potential utility for rota-
tions, we pose a sample problem in two dimensions
(the “Stargate Problem”, below) to compare a network
using square matrices instead of FILMR layers.

Beyond 2 dimensions, arbitrary rotations in n dimen-
sions incur a “curse of dimensionality” since their sym-
metry group has a “triangular number* of (n*> —n) /2
degrees of freedom. Restricting our attention to “simple
rotations” in a 2-dimensional subspace, we still retain

functionality. The algorithm of Aguilera and Aguila
[19] provides a way to construct such a rotation oper-
ator M iteratively using the plane of 2 n-dimensional
vectors # and V, rotating arbitrary vectors X by twice
the angular separation of # and V. Algorithm 1 shows
an outline of a FILMR layer’s operation.

3.1 The "Stargate Problem"

As an example toy problem, we imagine giving the
model the task of creating a latent space supporting a
simple operation: given a data element (i.e., data point)
advance to the next point, with a wrap-around boundary
condition such that if the point in question is the last
element in the sequence, the operation will map to the
first point in the sequence. This is a classic specification
of a “ring” symmetry group. Such rings occur in many
fields, but especially so in musical contexts such as
the basic modulo-12 arithmetic of musical keys, the
Circle of Fifths, and the “matrix” of John Coltrane [?
]. Our sample problem is very simple, but we could
extend this by imagining tasks such as: What if we
wanted to embed the Coltrane Matrix in a latent space
and learn the geometric transformations corresponding
to Coltrane’s processes?

Formally, this means, given some initial data space Y,
the model learns a projection /to a new space Z such
that for points z; € Z, the model is also able to learn
a transformation T'such that T'(z;) = z;+1. We refer to
this learning task as the “Stargate Problem” because
watching the system try to “lock in” while learning the
ring structure is somewhat reminiscent of “Stargate”
movie and TV shows, in which getting the stargate’s
chevron-shaped elements to “lock” was a prerequisite
for interstellar travel.

We start with points y; € Y that lie along a horizontal
line shown in blue in Figure ??. Even though we may
“know* that the correct pair of functions 4, Tto learn
are those in which points z; in the new space Z form a
circle, and that T'should simply be a rotation of 27 /N
(if N is the number of data points) One could apply
such goals in the form of supervised learning which

Algorithm 1 FiLMR Layer in n dimensions
(0,1,)

Trainable Parameters: 7,8 ~ N; i,V ~
Forward method:
Compute rotation matrix M (i, V) € R"™" via [19].
Given input ¥ € R”, transform via ¥ < (yX+ )M.
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Fig. 4: a) Progress of the Stargate Problem using FiLMR layer. "S-" in the top left of each pane indicates the
training step number. b) In contrast, evolution using a learned square orthogonal matrix. While such a
solution should exist in theory, the neural network fails to learn the appropriate transformations, perhaps
due to dynamic instability. See Figure 5 for a zoomed view of the final simulation states.
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Fig. 5: a): “Final” successful state of model trying the
Stargate Problem via a FILMR layer. The red and pink
colors and numbers are intended to show points lining
up on top of their “targets,” i.e., the next points in the
sequence. b): Unsuccessful result of trying to use a
learned orthogonal square matrix.

would make this problem nearly trivial. Instead, we
simply task the model with minimizing the objective
[T(z) —zi1] (1
where z; = h(y;). Note also that the points y; are imag-
ined as encodings of time-domain audio x;, encoding

viay; = f(x:).)

In theory, learning a square matrix for both hAand
Tcould produce the desired projection and transfor-
mation properties, respectively. In practice, however,
we find trying to learn a full matrix doesn’t work, i.e.
none of the many attempts we tried ever resulted in the
desired structure. Instead, the square-matrix solutions
tend to extend the points z; along a line. Figure 4 illus-
trates the progress of training, with final states shown
in Figure 5.

Extending beyond 2 dimensions to n dimensions, we
make use of the Aguilera-Perez Algorithm [19] to con-
struct a n-dimensional rotation matrix M from two
learned n-dimensional vectors i, V. The action of M
will be to rotate in the plane of # and V by an angle
double that of their separation. Thus, rather than need-
ing to learn a “triangular number” of O(n?) parameters,
the system only needs to learn 2n parameters beyond
the initial scale and translation of the FiLM layer. The
n-dimensional FILMR layer is outlined in Algorithm 1.
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Fig. 6: PCA plot after extending the Stargate Problem
to 64 dimensions and converting the sequence of notes
to the musical Circle of Sths. The inputs lie along the
diagonal line of 1’s (1,1,1,...), and the system learns a
rotation operator to bring them into a ring. A separate
process learns to rearrange the notes according to the
Circle of 5ths.

4 Summary

We have shown two examples of constructing “opera-
tional latent spaces (OpLaS)," via self-supervised learn-
ing, taking the encodings from larger pretrained models
and projecting them to spaces that support a desired
(learned) transformation such as summation or rota-
tion. These systems show potential for enabling “latent
plugins” for larger pretrained models which by default
may not support the desired transformations. The point-
wise actions of the loss functions in these systems are
reminiscent of inter-particle forces in physics, which
typically arise via some symmetry such as energy con-
servation [20]. This suggests that physical symmetries
may yield a fruitful set of transformations for seman-
tic musical operations, as is suggested by recent work
by Liu et al [21]. This paper serves as a preliminary
feasibility study using “points” in space as proxies for
audio stems and their encodings. Future work should
include applying the techniques from this study to high-
dimensional encodings of real audio.
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