
Practical Guide to Developing
Flow-Based Generative Models

Scott H. Hawley

Practical Guide to
(Understanding and)

Developing (Latent)
Flow-Based
Generative Models
Scott H. Hawley
Belmont University, Nashville TN USA
Hyperstate Music, Inc.
@drscotthawley

Tutorial @ IJCNN, June 30, 2025

https://github.com/drscotthawley

Orientation for this Tutorial

● Why this guide: "for Coders"
○ Many a tutorial/"guide" only shows math
○ Coding tutorials often too simple ("2D dots")
○ More tech/coding needed for bigger problems
○ For new/custom problems: Training, not just Inference

● Tutorial Scope: "medium sized" "image" problems
○ 2D dots < 642 ≤ Us (~1282,2562) < Much Bigger(=$compute$)
○ Use latent representations
○ Train on workstation, not cluster
○ Models fit on one GPU

My bias: Fast inference for image/MIDI model

Speaker Context
 PhD 2000 + 6 yrs postdoc: Astrophysics, numerical relativity, HPC

Professor 2006-now: teaching physics to audio engineering undergrads @ Belmont U.
First exposure to ML: audio source separation (via NMF!) @ AES 2013
2023-now: building AI songwriting coach w/ Hyperstate Music AI!

Research includes…
● audio sample library search app (Vibrary, w/ Art+Logic, 2017-2018)
● philosophy & ethics of AI (2018+)
● audio effects modeling (SignalTrain, 2019-20)
● object detection for musical acoustics (espiownage, 2021-22)
● text-to-music diffusion models (Stable Audio, 2023)
● composable semantic+geometric ops in latent space (OpLaS, 2024)
● controllable music generation (PicturesOfMIDI, 2024)

Teaching:
● "Deep Learning & AI Ethics" course at Belmont U: github.com/drscotthawley/DLAIE
● Tutorial blog posts: drscotthawley.github.io/blog/: PCA, RVQ, Attention, BYOL, Flow Models…

http://github.com/drscotthawley/DLAIE
http://drscotthawley.github.io/blog/

Speaker Context 2

Diffusion inpainting in pixel space with HDiT was musically-aware!

…But computationally "expensive": slow and compute intensive.

How to make it lightweight & faster…even run on CPU?
● Latent space: smaller, less compute
● Flow model: Fewer integration steps via smooth flow
● Bonus: Use custom quantized encoder for interpretable latent reps!

Diffusion ➟ Flows*
"Flowing" from diffusion tutorial by Sony AI…

Mathematicians: "They're the same"
Coders: "Flows are simpler"

*Flow Matching = Rectified
Flows = ___, all @ ICLR 2023
=> "Flows" in this tutorial
!= "Normalizing Flows"; we ditch
the normalizing property.

"Integration" / "Sampling"

Training (flip t axis t: 0→1)

Flows (FM & RF)

AKA "linterp"

SDE

ODE

Diffusion

Flow

For those of us more comfortable with analysis
than statistics…

SDE

ODE

Diffusion

Flow

Flows, we "know"...

Vector field:
Every location x
has an associated
velocity vector.

Velocities can
change over time

"Streamlines":
● smooth
● don't cross

(=invertible)

Wind flow map image from the University of Illinois WW2010 Project

http://ww2010.atmos.uiuc.edu/(Gh)/guides/maps/upa/wndvct.rxml

Quickstart: Diffusion ➟ Flow

Given a working diffusion code,

1. Simplify the training objective
2. Simplify the sampling noise schedule
3. Optional: Upgrade your sampling integrator

 All finished!
 Let's take a break! ;-)

✅ My "flow" fork of
@crowsonkb/k-diffusion

https://github.com/drscotthawley/k-diffusion/tree/flow
https://github.com/crowsonkb

 …Given a working code?
"Large-scale training of latent diffusion models

(LDMs) has enabled unprecedented quality in image

generation. However, the key components of the

best performing LDM training recipes are oftentimes

not available to the research community…"
— Barrada et al 2024, "On Improved Conditioning Mechanisms

and Pre-training Strategies for Diffusion Models", AKA
"Three Things Everyone Should Know About Training Diffusion Models"

…Hence this tutorial. We'll try to
build "key components" but for
flows (for simplicity)

Let's Back Up
to 1st Principles…

Familiar Idea: Hard Problem ➟ Tiny Steps

Often in science, we cast a "hard" problem in terms
of tractable "small changes": e.g., calculus,
differential equations

Full solutions found by accumulating over many
steps: integration

Similarly, in numerical methods (in general), we
often turn solution-finding into a process, akin to
time-evolution.

Examples…

cf. ML architectures:
most NN ops in
ResNets, UNets, &
Transformers
compute changes

Familiar Idea: Hard Problem ➟ Tiny Steps
Example: Newton's Method:

… Relaxation (elliptic PDE -> parabolic PDE),

(= diffusion!)

…Minimization, e.g. gradient descent

Familiar Idea: Hard Problem ➟ Tiny Steps

Start

Finish

Familiar Idea: Hard Problem ➟ Tiny Steps
Two main starting points for this:
#1. Solving forward from "known" starting point (IVP)
#2. Refinement (of entire solution) from initial "guess"

Generative models in these paradigms:
- (Markov chains? - #1 &/or # 2?)
- Autoregression: #1
- Diffusion/Flow: #2 – though "phrased" as #1!
❌ GANs

cf. ML architectures:
most NN ops in
ResNets, UNets, &
Transformers
compute changes

Recent work re. this:
"Auto-Regressive vs Flow-Matching: a Comparative Study of
Modeling Paradigms for Text-to-Music Generation",
Tal, Kreuk, & Adi, arXiv:2506.08570, 10 June 2025

https://arxiv.org/abs/2506.08570

Familiar Idea: Hard Problem ➟ Tiny Steps

For our flow models, the tiny steps will be incremental
motion along a streamline of the velocity field, e.g.

x += v(x,t) dt

Where v(x,t) is the output of some (nonlinear
multidimensional) curve-fitting system
– a neural network!

Review / Basic Tutorial on "Flows" - 1
● "Flow With What You Know": ICLR 2025 Blogpost Track

Many others ~same time, including (math) guide by Meta
● Basic idea:

○ Randomly pair samples from Source & Target distributions
○ "Guess" a constant velocity - i.e. linear interpolation
○ Train v(x,t) vs. guess with MSE

Source Target

Note: Source need not be Gaussian!

Won
"Best"!

https://drscotthawley.github.io/blog/posts/FlowModels.html

Review / Basic Tutorial on "Flows" - 2
 Learned velocity model predicts curved trajectories:

Trajectories are smooth (unlike most diffusion models), so can be
integrated via higher-order ODE solvers (e.g. RK4)
=> fewer integration steps => faster sampling.

Review / Basic Tutorial on "Flows" - 3
Training v

model
 != "supervised learning" in usual sense,

because v
linear

 is always "very wrong". (Loss flattens out >> 0)

You're just using the NN to aggregate/"marginalize" many
"streamlines" and provide for "interpolation" at untried
(x,t) pairs

Turns out that scaling up from 2D dots isn't easy
…Hence this tutorial!

Generalization? Flow vs. Diffusion Endpoints

GIF from Anne Gagneaux, cf. "On the Closed-Form of Flow Matching:
Generalization Does Not Arise from Target Stochasticity" by Bertrand et al,
arXiv:2506.03719 (4 June 2025)

https://www.arxiv.org/abs/2506.03719

Latent Gen Paradigm
🔥🔥Sander Dieleman: "Generative modelling in latent space" (Apr 15 2025)

https://sander.ai/2025/04/15/latents.html

"Understanding and" Developing
● Could just grab other people's code(s), assemble

components, & quickly move on without "deep
understanding", assuming…
○ your problem of interest is similar enough to theirs
○ can find their code (and maybe weights)
○ the LICENSE is permissive enough.

● For me, building from scratch is needed to truly understand,
and/or to build for "custom" problems. And yet…
○ code won't be as sophisticated/optimized as "theirs"
○ will struggle with mistakes/bugs!

Made a repo for this tutorial….

flocoder
github.com/drscotthawley/flocoder

Teaching + Research repo: Contributors wanted!

http://github.com/drscotthawley/flocoder

Teaching Tool vs. Performance?

flocoder started as teaching
project, writing code from
scratch so we understand it all

But maybe better to repurpose
others’ codes (SD3, Meta's,..) for
performance?

zLatents Obtained via AutoEncoder

Many people start with a pretrained AutoEncoder

○ Images: SD, SDXL, *DC-AE
○ Audio: (SoundStream), DAC, Music2Latent…
○ ___ for video

Training your own AE can be intensive. There's a lot of data, crafting
& "sweat" involved

VQGAN training codes & notes:

https://gist.github.com/madebyollin/ff6aeadf27b2edbc51d05d5f97a595d9

2025: Significant AE training updates this year! Next 2 slides…

O
ran

ge =

A
u

to
E

n
co

d
er stu

ff

E Dqx x̂

https://gist.github.com/madebyollin/ff6aeadf27b2edbc51d05d5f97a595d9

Open Source VQGAN(+) Progress…
"Although stronger, closed-source VQGAN variants exist…, their details are not fully shared

in the literature, creating a significant performance gap for researchers without access to

these advanced tokenizers. While the community has made attempts to reproduce these

works, none have matched the performance (for both reconstruction and generation)

reported in [the closed source variants].." — "MaskBit" aka VQGAN+ paper by Weber et al,

TMLR 2024 , arXiv:2409.16211, GitHub: markweberdev/maskbit (TF), lucidrains/maskbit-pytorch

https://arxiv.org/pdf/2409.16211
https://github.com/markweberdev/maskbit
https://github.com/lucidrains/maskbit-pytorch

"Deep Compression AutoEncoder (DC-AE)" Chen et al, ICLR 2025

https://github.com/mit-han-lab/efficientvit/

O
ran

ge =

A
u

to
E

n
co

d
er stu

ff

from diffusers import AutoencoderDC
dc_ae=AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f64c128-in-1.0-diffusers",..

https://github.com/mit-han-lab/efficientvit/tree/master/applications/dc_ae

Grab a pretrained first, then train
"custom" later

Probably should skip AE training for now.
=>Grab a pretrained AE (e.g. SD, DC-AE), go on to Flow
…then come back to (custom) AE training if time

O
ran

ge =

A
u

to
E

n
co

d
er stu

ff

zE Dqx x̂

zChoose your Latent Space
Continuous (VAE) or Quantized (VQVAE / VQGAN)?
● Continuous: Stable Diffusion (images) incl. SD3 ("Scaling Rectified Flow…")

● Quantized: Residual VQ popular for audio, others

○ Tutorial on RVQ: drscotthawley.github.io/blog/posts/2023-06-12-RVQ.html

■ The verdict: Don't write your own quantizer,
Just use @lucidrains/vector_quantize_pytorch

Many recent models use VAE, not seeing as much VQ.
● My choice: RVQGAN, Flow in continuous (pre-quantizer) latents z

○ Quantized flows exist but… on RVQ point sets??

Generic problems: download a pre-trained AE 🤗
Custom problems / new ideas (e.g. RepL): How to build/train?
● Major GitHub repo's may omit AE training code
● But you may find unofficial implementations

O
ran

ge =

A
u

to
E

n
co

d
er to

p
ic

E Dqx x̂

https://drscotthawley.github.io/blog/posts/2023-06-12-RVQ.html
https://lucidrains.github.io/

Sample RVQGAN Latent Space

Non-Gaussian in both

overall shape (non-oval,

clusters), and frequencies

Gives more "options" than

VAE but can be "a pain."

Recc: Start with VAE!

A Picture

(or if we just use Stable

Diffusion VAE, nevermind)

TODO: "What does

quantization get you?"

AutoEncoder Training Tips

VQGAN
● Resources:

○ github.com/dome272/VQGAN-pytorch
○ github.com/cloneofsimo/vqgan-training

● Keys & tips:
○ Images: Perceptual loss (LPIPS) to help learn textures

○ Avoid instabilities: Gradient clipping, No mixed precision
○ Save VRAM: gradient checkpointing
○ Decoder: use PixelShuffle instead of Upsample or Transposed Conv.
○ Use non-local attention at end of Encoder & start of Decoder

■ to separate "what" (e.g. textures) from "where"
○ After a while, freeze Encoder

flocoder/scripts/train_vqgan.py

Trained for X days on RTX A6000…

https://github.com/dome272/VQGAN-pytorch
https://github.com/cloneofsimo/vqgan-training

AutoEncoder Results
● WandB: Oxford Flowers (128x128x3->16x16x4, 4cb, 64 each)

○ Maybe redo with less compression?

● MIDI (tan line) --------------------------->

https://wandb.ai/drscotthawley/flocoder-vqgan-flowers

…and "scene."

End of AutoEncoder notes

"Throughput"

Before training flow model,

Pre-Encode the Data
flocoder/scripts/preencode_data.py

i.e., train flow model with frozen AutoEncoder, not "end to end"
Note: probably want to do augmentation here.

Flow Training (Velocity Model)

● Basic FM setup (Review):
○ Gaussian source data (doesn't need to be but often used)

○ Guess v := Random pairing source<-> target, constant velocity
○ Model learns curvy trajectories

■ Hence each guess is very wrong, always & forever!
■ Optional: train "Reflow" model later for straighter (~OT) trajectories

● Improvements/Options:
○ Time warping for better coverage of time/space domain

○ Better than Random pairing (Source <-> Target)?
■ Minibatch OT (Tong et al 2023), TorchCFM package

● fast Approx via greedy NN ;-)

○ Add "straightness" loss?

(Training) Metrics - How's It Going?
● Loss is a poor indicator, can nearly flatten out 👎

○ remember why? ;-)

● (Integrated) Output quality
○ FID / FAD score, if applicable

■ Note: For latent gen models, such metrics apply only to the

decodings of the gen'd latents

● Distribution comparison (of latents): gen'd vs. target
○ Wasserstein, Sinkhorn, Jensen-Shannon, KL,…

■ These may be slow, so use small validation set

● Other statistical comparisons
○ mean, stdev, min, max…

○ Not ideal but fast Terminology:
"Learned" == "Marginal"

Chizat et al NeurIPS 2020:
"Faster Wasserstein via
Sinkhorn…" cf. geomloss

Coding/Architecture Tips

Velocity Model: UNet, ViT, DiT,...
● Grab someone else's model code…if you can?
● Attention:

○ NATTEN or flash attention
○ RoPE for positional encoding
○ Note time embedding may "prefer" OG sinusoidal PE

● Conditioning (i.e., train with extra inputs): via embeddings
○ Make sure conditioning values stay normalized.
○ Image-wide cond signals often merged w/ time emb.

■ class (MNIST, CIFAR,...) number -> embedding
■ text (T5?) embeddings
■ …?

Results, Flowers

Pred (Unconditional)

Images: 3x128x128
Latents: 3x16x16
(Custom RVQGAN)
1500 Epochs

Target

Results, MIDI
Pred (decoded) Target (decoded)

Results, MIDI
Codebook Vectors

Flow model learns to
generate very
non-normal distribution
of codebook vectors:

Optimizations
● Training:

○ Faster convergence: Minibatch OT / Greedy NN

○ Better quality(/stability): Use EMA weights

● Inference (speed):

○ Reflow?

○ Higher-order integrator?

○ Quantization?

Further Topics
Inference Tricks:
○ Guidance

○ Inverse Probs: Deblurring, Super-Res, Inpainting

Scaling Even Bigger

Guidance

Classifier-Free Guidance:
● Training: randomly turn off conditioning

● Inference:

v
cond

 = model(x, t, class)

v
uncond

 = model(x, t, None)

v = v
uncond

 + cfg * (v
uncond

 - v
cond

)

● Otherwise, you may get class-compliance

but poor output quality, e.g.

A "plugin" at inference time, altering the velocity via linear combination.

Inference-Time Inverse Problems

"Training Free Linear Image Inverses with Flows", Pokle et al 2024 arXiv:2310.04432

For noisy observations y = Ax1 + ε
with degradation matrix A

Focus: Inpainting
● Some inpainting you get for free

○ Maximum Likelihood: most (normal) photos in training data

don't have blank areas: e.g., face images have noses!

● 2 Papers, Mar. 2024: TFLIIF (prev slide), & PnP-Flow (Martin et al)

● Could also try training a conditional Inpainting model

○ in pixel space

○ in pixel-structured latent space

○ in abstract latent space: train a mask encoder too?...

Focus: Inpainting
Motivation: Image from PicturesOfMIDI…

Algorithms for inpainting with diffusion models: CRASH, RePaint, …

…In Latent Space?
 y = Ax1 + ε where A is a linear degradation operator in pixel space

But given a nonlinear encoder E to latents yL = E(y), x1L = E(x1)
in general there is no AL s.t. yL = AL x1L+ εL (e.g. 67% error!)

Two main ways to handle this:

1. Ensure that E preserves spatial structure (e.g. no global attention)

2. Continually project back & forth to "check":
latents <-> pixels

DC-AE

…In Latent Space?
"Representation learning and reconstruction are two separate tasks,
and while it is convenient to do both at once, this might not be
optimal."-

–-Sander Dieleman's blog post
(https://sander.ai/2025/04/15/latents.html)

> "Bonus: Use custom quantized encoder for interpretable latent reps! " ❌
Could do interp & gen, but not inpainting b/c custom encoder used non-local
attn which destroyed spatial structure.

zE Dqx x̂

Scaling Even Bigger…? ($$)
● Data:

○ Get it ethically, e.g. licensed. (Days of mass scraping are gone)

○ Storage/delivery: maybe WebDataset, cf. works by LAION

● Model(s) still probably fit on one GPU, so:
○ Distributed Data Parallel

○ 🤗 Accelerate / LightingAI / RAPIDS / DeepWhatev / FastWhatev

● Compute: SLURM, NCCL

● Text conditioning: play with prompts(/metadata) a lot

● 󰩃 RLHF: pre-release, loop in user feedback
○ May paper Flow-GRPO 👀

https://arxiv.org/abs/2505.05470

Single-Step: Mean Flow Models?
Watch Jia-Bin Huang's Video!
https://www.youtube.com/watch?v=swKdn-qT47Q

https://www.youtube.com/watch?v=swKdn-qT47Q
http://www.youtube.com/watch?v=swKdn-qT47Q

References

⭑ My blog post & others, and references therein

⭑ Meta's guide & code, Dec 2024

⭑ Sander D's blog: "Generative modelling in latent space"

⭑ Barrada et al: arxiv.org/abs/2411.03177v2

⭑ TorchCFM repo (Tong et al, Meta)

https://sander.ai/2025/04/15/latents.html
http://arxiv.org/abs/2411.03177v2
https://github.com/atong01/conditional-flow-matching

Thanks! / Acknowledgements

● Raymond Fan (Ph.D., U. Toronto): great discussions

● Tadao Yamoaka: permission to include/use/mod code(s)
○ UNet, MNIST, CIFAR10. (I ported CIFAR10 -> Flowers)

● IJCNN Organizers, esp. Danilo Comminiello 👏👏👏 and

Eleonora Grassucci 👏👏👏
Attribution: Curvy shapes from Canva AI
free trial, recolored & moved.

–@drscotthawley

Repo

Supplemental Materials

Link to these Google Slides:

https://docs.google.com/presentation/d/1tL3IRDIkK2vAvagCkPXxMMCSTnxoSsiPzgkiH

LlY2t8/edit?usp=sharing

aka https://tinyurl.com/IJCNNHawley

Supplementary/ Colab:

 https://tinyurl.com/IJCNN2025HawleyColab :

Colab

https://docs.google.com/presentation/d/1tL3IRDIkK2vAvagCkPXxMMCSTnxoSsiPzgkiHLlY2t8/edit?usp=sharing
https://docs.google.com/presentation/d/1tL3IRDIkK2vAvagCkPXxMMCSTnxoSsiPzgkiHLlY2t8/edit?usp=sharing
https://tinyurl.com/IJCNNHawley
https://tinyurl.com/IJCNN2025HawleyColab

