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ABSTRACT

We investigate applying audio manipulations using pretrained neural network-based autoencoders as an alternative
to traditional signal processing methods, since the former may provide greater semantic or perceptual organization.
To establish the potential of this approach, we first establish if representations from these models encode information
about manipulations. We carry out experiments and produce visualizations using representations from two different
pretrained autoencoders. Our findings indicate that, while some information about audio manipulations is encoded,
this information is both limited and encoded in a non-trivial way. This is supported by our attempts to visualize
these representations, which demonstrated that trajectories of representations for common manipulations are
typically nonlinear and content dependent, even for linear signal manipulations. As a result, it is not yet clear how
these pretrained autoencoders can be used to manipulate audio signals, however, our results indicate this may be
due to the lack of disentanglement with respect to common audio manipulations.

1 Introduction

Musical audio production workflows use a variety of
parameterized transformations to perform the process-
ing and re-synthesis of audio signals. Examples include
the sliders on a multi-band equalizer, dynamic range
changes made by adjusting gain or compression, spec-
tral processing, and adjustments made by changing
MIDI parameters. The development of increasingly
“intelligent” music interfaces may be regarded as a pur-
suit to find transformations yielding representations
that more closely match the perceptual or semantic con-
tent of interest to music producers, such as fewer knobs
that control high-level aspects of the sound [1].

Neural network-based audio autoencoders have shown
promise for many applications, including audio cod-
ing [2, 3] and the transfer of musical style features
such as instrument type [4, 5] and audio production
details [6]. The type of encoder chosen will produce
encoded representations that are typically better suited
for some tasks than others. Often such tasks take the
form of classification and/or Music Information Re-
trieval [7, 8, 9]. We focus on the analysis and synthesis
of audio signals by freezing the weights of pretrained
autoencoders optimized for audio reconstruction. The
latent representations arising in such autoencoders may
encode semantic or stylistic information [9].
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Fig. 1: Mel spectrogram (top) and latent representa-
tion “spectrogram” from the DiffAE diffusion
autoencoder.

To place this work in context, one may consider spec-
trograms computed via short-time Fourier transforms
(STFT), which can be viewed as columns of “vec-
tors" in a multi-dimensional space. The representa-
tions produced by neural network systems can similarly
be viewed either as a set of vectors or as columns in
"neural [activation] spectrograms" or "feature maps".
Illustrations of such spectrogram-like representations
appear in Fig. 1.

Previous neural network methods for audio effect trans-
formations [10, 11, 12] have been created in an end-to-
end manner using supervised learning. In this paper,
we consider transformations only upon the latent repre-
sentations of pretrained auto-encoders. By leveraging
the encoder and decoder portions for systems that have
been pretrained on large datasets, one may be able to
discover transformations of latent representations from
relatively small datasets. In contrast to typical transfer
learning approaches that further update the weights of

a model, this study wishes to explore the potential of
achieving useful signal manipulations by manipulating
only the intermediate activations or representations of
a frozen pretrained model.

This paper lays the groundwork for the development
of few-shot or zero-shot musical audio transformations
from a self-supervised training program. Our early at-
tempts at zero-shot style transfer of audio production ef-
fects using vector algebra operations on representations
from pretrained autoencoders 1 were largely unsuccess-
ful, motivating the visualizations and classification tests
of this paper: we aim for a better understanding of the
features of such representation spaces.

We hypothesize that “good" embedding spaces would
also provide for strong coupling to text-based control
systems as is seen with text-to-image models [13, 14,
15]. Identifying perceptually meaningful transforma-
tions in the latent space could also enable the discovery
and design of novel audio manipulations, paving the
way for new methods of audio effect design and en-
abling users to more intuitively explore and discover
novel sound manipulations [16].

A key challenge for working with latent space represen-
tations is to disentangle the different dimensions, e.g.,
so that user controls such as knobs and sliders have one
primary (perceptual or semantic) effect [17, 18, 5]. Dis-
entangling dimensions has also led to improvements
in few-shot voice style transfer [19]. Applications of
contrastive methods [20, 21] have shown that seman-
tically populating the latent space and disentangling
dimensions can be mutually achievable. We choose
to work with existing autoencoders that have not nec-
essarily been optimized for disentanglement of their
latent dimensions, as a way to explore their level of
disentanglement.

To investigate this we perform visualization of the rep-
resentations projected into two and three dimensions
using Principal Component Analysis and UMAP [22],
as well as conduct classification experiments that aim to
quantify both the degree of information encoded about
manipulations and how this information is encoded.
We hope that our investigations will lead to advances in
musical audio production that make content-based and
semantic operations easier to perform than are currently
possible.

1Colab notebook: https://tinyurl.com/Destructo-ipynb, Oct. 2022
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Table 1: Parameter settings for classification tests. All
other settings were defaults except the Com-
pressor used a “Ratio” value of 5.

Abbr Effect Name Parameter Value

CLN Clean - -
CHS Chorus Rate (Hz) 1
CMP Compressor Threshold (dB) -50
DLY Delay Delay (s) 0.5
DIS Distortion Drive (dB) 25
HPF Highpass Filter Cutoff (Hz) 2000
LPF Lowpass Filter Cutoff (Hz) 70
PS PitchShift Semitones 4
RVB Reverb Room Size 0.8
TRV Time Reverse - -

2 Methods

2.1 Models

The models we studied are two pretrained diffusion
autoencoders developed internally by Harmonai 2. The
first model we refer to as “DiffAE," which uses a 64-
dimensional latent representation space; the lower im-
age in Fig. 1 is from the DiffAE model. The sec-
ond model is a two-stage cascading latent diffusion
model [23, 24] which we refer to as the “Stacked Dif-
fAE” or simply “Stacked” model. Representations in
both stages are 32 dimensional, but those of the sec-
ond stage are more compact in time, containing a 16×
coarser resolution in time than the first. Unless other-
wise noted, we always use the smaller, more compact
Stage 2 representations in this paper. The (larger) Stage
1 representations used in this paper are obtained on
the decoder side by upsampling the (more compact)
Stage 2 representations and performing additional dif-
fusion. We have not used any Stage 1 representations
from the encoder side. In addition to the architecture
differences, the two models were trained on different
datasets, sampled from an unreleased repository of a
variety of music. In this study it is not our aim to de-
termine which differences in representations are due to
particular differences in the pretrained autoencoders,
rather we use multiple models to temper any generaliza-
tions that might otherwise be drawn from considering
only one autoencoder model.

2These models are not published but are similar to models under
development at https://github.com/Harmonai-org

Table 2: Settings for parameter variation tests, using
32 increments from minimum to maximum,
with HPF and LPF values varying logarithmi-
cally. All other settings were defaults.

Effect Name Parameter Min - Max

Distortion (DIS) Drive (dB) 0 - 30
Reverb (RVB) Room Size 0.01 - 0.99
Highpass Filter (HPF) Cutoff (Hz) 50 - 10000
Lowpass Filter (LPF) Cutoff (Hz) 50 - 10000

Early

Late

Early

Late

Fig. 2: PCA plot of time trajectories for one guitar
sample (circles) and one piano sample (crosses),
for the 32-dimensional Stacked DiffAE model.

2.2 Datasets

We constructed a dataset of 1024 audio samples at
48 kHz, each 5.4 seconds in length (218 samples). We
sourced 512 guitar sounds from GuitarSet [25], in-
cluding performances of both solo notes and strum-
ming chords. The remaining 512 samples were piano
sounds sampled from the 2018 subset of the MAE-
STRO dataset [26]. We chose to use only two musical
instruments, solo, so that the results of audio effect
manipulations could stand out more clearly than they
might if applied to a more widely-varied musical audio
dataset. All input sounds were mono recordings that
were ’doubled’ to stereo (because the models expect
stereo inputs), and loudness-normalized via pyloud-
norm3 [27] before and after passing through audio
effects to remove level differences. We select nine dif-
ferent audio manipulations using fixed parameters to
explore the clustering by effects and four effects for
which we investigated the results of varying one key
parameter. All audio effects, except a “clean” bypass
and a time-reversal, were applied via Pedalboard4

with settings shown in Table 1 for classification tests
and Table 2 for parameter variation tests.

3https://github.com/csteinmetz1/pyloudnorm
4https://github.com/spotify/pedalboard
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Fig. 3: 3D projections of flattened representations of the DiffAE autoencoder (top row) and stacked model (bottom
row), showing PCA (left column) and UMAP (right column) mappings. In the UMAP plots, one sees that
variations due to performance typically are more significant than variations due to audio effects. The two
classes of instrument sounds map to largely disjoint areas of the latent space.

3 Results

3.1 Visualization

Fig. 2 shows the trajectories of representation vectors
as a function of time, projected into three dimensions
using Principal Component Analysis (PCA). The two
trajectories shown are projected using the PCA trans-
formation derived from the entire dataset. The “motion”
of these representation vectors describes a complicated
path. While methods such as RAVE [5] employ a “prior
model” to learn to predict such trajectories autoregres-
sively for music generation, in this study we simply
note that the trajectories as seen in 3D PCA projections
do not seem to follow any easily intuited pattern.

An alternative view results from flattening the represen-
tations for all dimensions and times into single vectors
that inhabit a high-dimensional space. Fig. 3 shows
flattened representations colored by audio effect class

in PCA and UMAP [22] 3D projections. The PCA
projections in the left column for both the DiffAE (top)
and the Stacked (bottom) models show some separation
by audio effects class with the latter showing stronger
clustering by audio effects. However, the UMAP im-
ages in the right column of Fig. 3 show that except
for one or two effects, the clustering of flattened rep-
resentations is not class-determined: the variation due
to musical performance (of the guitar or piano piece)
plays a greater role in the data representations, with
audio effects being a small perturbation.

To obtain a stronger “style” signal to investigate the
separation by audio effect class, we time-average the
representations and plot them in Fig. 4. The resulting
PCA data (left column) appears similar to the previous
Fig., however, the UMAP plots (right column) now
show much stronger grouping by audio effects than in
the previous figure. This suggests that time averages
of the representations may serve as a useful proxy for
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Fig. 4: 3D projections of time-averaged representations of the DiffAE autoencoder (top row) and stacked model
(bottom row), showing PCA (left column) and UMAP (right column) mappings. One sees that the time-
averaged representations typically offer better clustering and separation by audio effect than the flattened
representations in Fig. 3. As in the previous figure, we observe large-scale clustering according to musical
instrument class.

“style” information, and at the very least that the rep-
resentations of these autoencoder models do encode
some “semantic” structure with respect to audio effect
class.

A final visualization study explores the variation in em-
beddings due to effect parameter values. Fig. 6 through
8 show the effects of varying key “knob” values for
Distortion, Reverb, Highpass and Lowpass Filter ef-
fects. A primary observation is that varying an affect
parameter typically results in a nonlinear path through
the space, even for “linear” effects such as the filters.
This helps explain the unsuccessful results of earlier
attempts at few-shot neural audio style transfer based
on algebraic operations on representation vectors. Fig.
9 combines the display of multiple effects parameters
applied to a few audio samples. Again, one sees curved
paths even for “linear” effects such as HPF, whereas
perhaps unexpectedly the Distortion paths tend to ap-
pear comparatively unidirectional.

3.2 Manipulation classification

To quantitatively measure the level of information
about signal manipulations captured by our autoen-
coders we use manipulation classification as a proxy
task. Similar to the evaluation methodology employed
in self-supervised representation learning, we use a
linear probe on top of the embeddings from frozen pre-
trained encoders to perform classification [28]. In our
setup, we train linear probes on the 10-way classifi-
cation task, predicting which of the 9 different audio
manipulations was applied to the source audio or if
no manipulation is present. Linear probes consist of a
single layer that maps from the embedding space to the
number of classes. This results in a parameter count
proportional to the embedding dimensionality.

Since our encoders produce a sequence of representa-
tions (in time), we adopt two different approaches to
feeding the extracted embeddings to the linear probe.
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Encoder Dim Probe Class-wise Accuracy (%)

CHS CLN CMP DLY DST HPF LPF PS RVB TRV AVG

VGGish-T 128 1.3 k 98.0 80.6 90.1 81.3 91.4 94.5 96.9 86.7 90.4 94.5 92.9
VGGish-F 2176 21.8 k 98.0 76.5 85.2 76.8 92.1 90.1 96.9 83.3 88.7 95.1 90.3

Stacked2-T 32 0.3 k 24.0 54.9 28.1 34.9 86.6 78.5 95.0 66.7 79.3 32.0 57.7
Stacked2-F 16384 163.9 k 45.2 42.2 30.2 65.1 84.7 80.9 94.4 68.2 71.3 39.2 63.1

Stacked1-T 32 0.3 k 29.9 59.2 27.1 26.5 88.6 71.4 96.9 54.2 74.8 36.8 57.4
Stacked1-F 262144 2621.5 k 14.6 37.6 9.4 29.2 41.9 59.1 88.7 24.5 58.5 48.6 41.1

DiffAE-T 64 0.7 k 11.2 32.5 3.6 9.3 92.9 46.1 86.9 31.0 63.5 27.1 40.3
DiffAE-F 131072 1310.7 k 4.4 32.7 47.7 16.3 73.6 17.0 27.0 19.3 18.6 25.6 28.9

Table 3: Effect classification accuracy when training a linear probe on top of normalized representations from
pretrained encoders. T denotes time-averaged embeddings and F denotes flattened embeddings. Best-
performing models are denoted in boldface.

First, we consider the time average of all embeddings,
which has the effect of reducing variance across time
frames. However, time averaging may remove infor-
mation critical for detecting audio effects if the effect
exhibits behavior over larger time scales, for example,
reverberation. To account for this case, we also con-
sider the complete flattened sequence of embeddings.

In our evaluation, we compare representations from
the Stacked autoencoder (Stage 1 and Stage 2), as well
as the DiffAE. As non-autoencoding baseline we also
use embeddings extracted from the pretrained VGGish
model5 [29]. Similar to the autoencoders, the VG-
Gish was not trained to explicitly capture information
about audio manipulations. However, unlike the au-
toencoders, it does not enable reconstruction of the
original signal given an encoded sequence.

All probes are trained using a batch size of 32 with
the AdamW optimizer and a learning rate of 3 · 10−4

for a maximum of 500 epochs. We use early stopping
with a patience of 50 epochs monitoring the validation
accuracy. Results from these classification tests are
shown in Table 3. While all features enable classifi-
cation accuracy higher than random guessing, we find
that the VGGish features significantly outperform all
of the autoencoder representations. This indicates that
all representations encode some information that is pre-
dictive of audio manipulations, however, there is com-
paratively less information captured in the autoencoder
representations when used both in the time-averaged
and flattened configuration.

5https://github.com/hearbenchmark/hear-baseline

3.3 Dimension masking

While the multi-class classification experiment pro-
vides some insight into the level of information about
audio manipulations, it does not provide any insight
into how this information is encoded. Developing an
understanding of how information is encoded is critical
for leveraging the embedding space for signal manipu-
lation. To approach this question, we designed a second
classification experiment.

In this experiment, we consider a binary classification
task where a linear model is trained to classify if a given
effect is present or if the signal is clean. To understand
how information is encoded within the pretrained repre-
sentation, we mask one dimension of the representation
and then train a classifier. We then repeat this process
for each dimension of the representation and for each
of the 9 effects, measuring any decrease in classifica-
tion accuracy. If masking one dimension significantly
decreases performance, it indicates that information
predictive of the manipulation in question is encoded
in this dimension.

Due to its superior performance in the previous exper-
iment, we consider the Stacked autoencoder model,
which features a 32-dimensional representation. There-
fore we train 32 linear classifiers for each of the 9
effects, masking one dimension of the representation
each time to produce a total of 228 models. Similar
to the previous experiments, we use a batch size of 32
along with the AdamW optimizer and a learning rate
of 3 ·10−4. All models are trained for 100 epochs and
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Fig. 5: Evaluation of the relative importance of each dimension of the Stacked autoencoder (Stage 2) (D = 32)
using time-averaged embeddings when detecting the presence of each audio effect. The colormap indicates
the decrease in the number of percentage points for the binary classification accuracy when masking one
dimension of the representation as compared to the best-performing configuration for each effect type.

we select the best model for evaluation based on the
validation accuracy.

We report the results in Fig. 5, where the color map
indicates the number of percentage points lost by mask-
ing the associated dimension as compared to the best-
performing model for that effect. We note that for all
dimensions and effects, it appears that no single di-
mension is particularly predictive. In the worst case,
masking dimension 7 and 18 decreased the classifi-
cation accuracy for time reversal by ≈ 6 percentage
points. However, it seems that masking any dimen-
sion of the representation caused a larger decrease in
accuracy for certain effects, such as time reverse, low-
pass filter, chorus, and compressor, while effects like
highpass filter, pitch shift, and reverberation saw little
variation. From these results we conclude that disen-
tanglement of the representation with respect to the
manipulations studied is likely low.

4 Summary

We explored the latent spaces of two pretrained audio
autoencoders by manipulating musical audio samples
via multiple classes of audio effects. The inner repre-
sentations of these models show some clustering ac-
cording to audio effects when one considers the time
average of the effects, whereas the full representations
in flattened form tend to cluster more strongly based on
each individual musical performance. In all cases, the
space tended to be divided by musical instrument type
(e.g. guitar samples on one side, piano on another).

To provide a quantitative measurement of the separation
by audio effect, we applied classification tests using a
linear probe, comparing against a VGGish model as a
baseline. We found that the frozen autoencoder repre-
sentations tended to perform significantly worse than
the VGGish model for classification by audio effects,
with the time-averaged representations performing bet-
ter than the flattened ones – in agreement with our
observations of the visualizations.

By varying the parameters of audio effects, we observe
that the resulting path of time-averaged representations
through latent space tends to be nonlinear, even for “lin-
ear” effects such as Highpass and Lowpass filters. Thus
representation-based methods for audio manipulation
must take this inherent nonlinearity into account.

The findings of this paper may inform future efforts
to develop efficient, sophisticated methods for musi-
cal audio production which can take advantage of the
tendency for neural network autoencoders to encode
semantic content. We speculate that additional work in
disentangling the dimension of the latent spaces may
yield improved results for audio production workflows.
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