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This dissertation onerns the numerial simulation of salar �elds in urved spae-

times, in on�gurations whih bear similarities to ertain astrophysial systems.

We present a new study of blak hole threshold phenomena assoiated with \boson

stars", whih are star-like equilibrium solutions of the oupled Einstein and Klein-

Gordon equations. We onstrut Type I ritial solutions dynamially by imploding

around the boson star a arefully tuned spherial shell onsisting of a massless real

salar �eld. We ompare the resulting ritial solutions with unstable boson stars

via an extension of the linear perturbative analysis of Gleiser and Watkins [Nul.

Phys. B319 733 (1989)℄, and establish a lose link between spherially-symmetri

ritial solutions of a massive omplex �eld and unstable boson stars. This work

implies that unstable boson stars are unstable toward dispersal in addition to blak

hole formation, and may imply that neutron stars at or beyond the point of insta-

bility may also be unstable to explosion. We also disuss \multi-salar stars", a

new lass of quasi-periodi ompat solutions whih were disovered in the ourse

of the boson star simulations. We further present work toward the development
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of a omputing environment to provide parallel adaptive mesh re�nement (AMR)

automatially to developers of sequential, single-grid �nite di�erene odes. This

work involves a hybrid of algorithms developed over several years at multiple insti-

tutions, presented in one ohesive pakage with the addition of several important

new features. We onsider an appliation to solve a anonial hyperboli system,

the wave equation, whih serves as a prototype for a \generi driver" for AMR ap-
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onsider the evolution of a massive omplex �eld oupled to an eletromagneti �eld

in the viinity of a Kerr blak hole. Suh a system has features similar to those
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driver.
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Chapter 1

Introdution

1.1 Notation and Conventions

Throughout this dissertation we will use the traditional \numerial relativity" nota-

tion whih is also employed in Misner, Thorne and Wheeler [73℄. Namely, we employ

a metri with signature �+++, we will use Greek indies to run from 0 to 3 (i.e.

over time and spae) and Latin indies to run from 1 to 3 (for spatial quantities),

with the summation onvention applied over eah set of indies. We will use the

symbol r

�

to denote the ovariant derivative ompatible with the four-dimensional

metri g

��

, and the symbol D

i

as the ovariant derivative ompatible with the three

dimensional \spatial" metri h

ij

. (Indies of \spatial" vetors suh the eletri and

magneti �elds E

i

and B

i

are raised and lowered using h

ij

.) As an additional short-

hand notation throughout this dissertation, we will often employ the non-tensorial

operator �

�

� g

��

�

�

. (We will only use this operator on salar �elds.) We will

work in geometrized units, suh that Newton's onstant G = 1 and the speed of

light  = 1. For the massive salar �elds overed in this dissertation, the \boson

mass" m has units of inverse length, for whih the orresponding physial mass is

m�h=. Thus we hoose �h = 1, but we emphasize that all the disussions and results
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to follow are given within the ontext of lassial �eld theory.

1.2 Layout

This thesis is onerned with the numerial simulation of systems whih feature

salar �elds in strong gravitational �elds. These systems bear many similarities to

well-known astrophysial uid systems. A salar �eld provides a useful matter soure

whih shares many features of a uid, yet the salar �eld is desribed by simpler

equations of motion, and thus an provide a simple \toy model" of an astrophysial

matter soure with whih to study dynamis in general relativity. This thesis is

divided into the following prinipal parts: boson stars, multi-salar stars, salar

aretion and adaptive mesh re�nement.

Boson stars are ompat bodies omposed of a omplex massive salar �eld,

minimally oupled to the gravitational �eld of general relativity. These objets are

loal equilibrium solutions of the Einstein and Klein-Gordon equations, in whih the

spaetime is stati, although the real and imaginary omponents of the salar �eld

osillate. Boson stars have similarities to neutron stars, suh as their possession

of a maximum mass whih marks the transition from stability to instability. We

present dynamial simulations of boson stars whih are driven to the threshold of

blak formation via an exhange of energy with an additional real, massless salar

�eld. We show that the ritial solutions appear to be unstable boson stars.

Multi-Salar Stars are a family of stable, quasi-periodi ompat solutions

to the Einstein-Klein-Gordon system whih were disovered in the ourse of the

boson star simulations. This lass of solutions ontains boson stars and osillating

soliton stars (whih are periodi solutions involving a single real �eld) as subsets.

The remarkable feature of these multi-salar solutions is that they indiate that

stable, quasi-periodi solutions are perhaps more generi than has been previously

assumed. We disuss the onstrution of multi-salar stars and relate results of some

2



simulations of these objets.

Adaptive Mesh Re�nement (AMR) is the name given to a lass of tehniques

that an be used when modeling physial systems using approximate �nite-di�erene

solutions of partial di�erential equations. For simulations in whih a �xed loal a-

uray is desired, the required resolution may vary widely both in spae and in

time, in a manner whih is unknown a priori. AMR is a way of providing the

appropriate amount of resolution throughout the spae-time domain, and allows

one to generate solutions within a desired error tolerane at a fration of the ost

of a orresponding uniform-grid (unigrid) appliation. However, even given a er-

tain amount of omputing eÆieny one obtains from AMR, urrent �nite-di�erene

odes must be parallelizable if they are to take full advantage of the largest om-

puters ommonly available to researhers. AMR and parallelization eah present

signi�ant hallenges whih for many researhers may be prohibitive and lead us

to investigate the development of environments where AMR and parallelization are

provided \automatially". This thesis inludes work towards the reation of one

suh environment.

Salar aretion is a term we will use to denote the dynamis of a salar �eld

whih is being swallowed by a blak hole. The intended system referened here is a

salar \aretion disk" in whih the salar �eld is harged and oupled to an eletro-

magneti �eld, and evolving in the viinity of a rotating blak hole. This researh

was intended to serve as useful test ase for the adaptive mesh re�nement teh-

niques desribed above. This work is just beginning, and we disuss the neessary

bakground for the material and give a urrent status report.

1.3 Connetion with Other Researh

Salar �elds have not been measured by any experiment to date, yet urrent the-

ories of partile physis and osmology all for the existene of one or more salar

3



(or pseudo-salar) �elds. Furthermore, measurements of galaxy rotation urves and

the properties of galaxy lusters indiate that there is a substantial amount of non-

baryoni matter, \dark matter", in the universe. The salar �elds studied in this

thesis provide one andidate for the weakly-interating \missing mass" of our uni-

verse. It is reasonable to suggest that, if these �elds exist, they might reah suf-

�ient densities in ertain plaes as to ondense into the ompat objets we all

boson stars, or be drawn into blak holes (formed by salar or fermioni matter)

and display some of the dynamis desribed in this work.

The boson star researh is interesting prinipally for what it tells us about

strong-�eld gravity. Dynami solutions of Einstein's equations in their full nonlin-

earity are fairly reent additions to the �eld of relativity, and the solution spae of

the theory is still largely unexplored. The work presented in this thesis is a further

ontribution to the study of ritial phenomena in gravitational ollapse, whih be-

gan not quite a deade ago. This researh may also suggest a diretion for neutron

star researh in the near future, given the suggestion that, beause boson stars an

explode, neutron stars an probably do the same. This may prove to be a foundation

for providing yet another senario (among many) desribing the mysterious gamma

ray bursts measured by spaeborne gamma ray observatories.

The salar aretion study, like the boson star work, also serves as both a \toy

model" for more onventional (fermioni) astrophysis, and an interesting study in

its own right about a system whih has reeived very little attention. It is in part a

stepping-stone to the goal of full 3D magnetohydrodynami (MHD) simulations in

evolving spaetimes. We may be able apture some features thought to be important

in astrophysial uid systems, suh as proesses for extrating energy from the blak

hole, and the prodution of high-speed jets.

The AMR work has relevane for omputational physis as a whole, beause

many researhers are now interested in performing 3+1-dimensional simulations of

4



various phenomena, and suh simulations will require eÆient use of omputational

resoures to provide suÆient resolution of interesting features in the system. Two

appliations of interest to this author are the binary blak hole problem and the

global simulation of MHD aretion disks.

1.4 Our Matter Model

1.4.1 Salar Fields Themselves

What is a salar �eld, \physially"? All the systems onsidered in this thesis are

oneived within the ontext of lassial �eld theory. In this view, the salar �eld rep-

resents another fundamental �eld, like the eletromagneti and gravitational �elds

As mentioned previously, suh additional fundamental �elds are a feature of some

popular theories of partiles physis and osmology, so �elds suh as those studied

in this thesis may indeed exist in our universe. We will use the term \boson" at

times (e.g. \boson star"), sine salar �elds would be omposed of spin-0 (bosoni)

partiles. The salar �eld is regarded as a smoothly-varying �eld, a funtion de�ned

on all points in spae and time, for whih the values of this funtion and its spa-

tial and temporal derivatives ontribute to a loal energy density everywhere in the

spaetime. This funtion evolves aording to the well-known Klein-Gordon equa-

tion, with some possible oupling to other fundamental �elds in the model, and may

inlude a \mass" term whih gives a dispersive quality to \wave pakets" omprised

of the salar �eld. This dispersion is important as it provides an e�etive repul-

sive pressure, whih an support a ondensed mass of the �eld against gravitational

ollapse and allow it to form a boson star. Even if salar �elds do not atually

exist in our universe, their study is nevertheless signi�ant. Salar �elds have often

been employed in relativity researh beause they represent a very simple matter

soure, having only one (oordinate-invariant) omponent and possessing nontrivial

5



dynamis in spherial symmetry.

In this thesis, we will onsider omplex and real salar �elds. For the boson

star study of Chapter 3, we will use a model in whih one omplex massive �eld

and one real massless �eld are oupled to the gravitational �eld of general relativity

in spherial symmetry. Chapter 4 disusses the dynamis of two real massive �elds

oupled to gravitational �eld of general relativity. In Chapter 6, we will we will

onsider a massive omplex �eld oupled dynamially to an evolving eletromagneti

�eld in the presene of the stati spaetime of a rotating blak hole.

1.4.2 Salar Fields vs. Hydrodynamis

Salar �elds share some properties with perfet uids, whih are often used in more

`realisti' models of astrophysial systems. A perfet uid is haraterized by three

quantities: a uid 4-veloity vetor �eld, an energy density salar �eld, and an

isotropi pressure salar �eld [37℄. The stress energy tensor for a perfet uid is

given by

T

��

= (�+ p)u

�

u

�

+ pg

��

(1.1)

where � and p are the energy density and pressure, respetively, in the rest frame

of the uid, u

�

is the uid 4-veloity, and g

��

is the metri tensor.

An important di�erene between salar �elds and uids is that harateris-

tis of the salar �eld wave equation do not ross, and thus these systems do not

develop disontinuities in generi evolutions of smooth initial data. The tendeny

of uids to form shok waves presents a signi�ant hallenge to omputational uid

dynamiists, requiring a host of sophistiated numerial tehniques to handle these

features properly in a omputer ode. Fluid systems also require speial treatment

for very low densities beause the uid equations are not well de�ned in the vauum

limit. For this dissertation, we will not need to handle shok waves, and an employ

the more onventional methods developed for smoothly-evolving funtions.
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The similarities between salar �elds and perfet uids an be made more

rigorous by following a disussion due to Madsen [68℄. A real salar �eld an be

desribed by the Lagrangian density

L = �

1

2

(�

�

��

�

�) + V (�) (1.2)

where V (�) is some potential term. The stress energy tensor is written as

T

��

= �

�

��

�

�+ Lg

��

(1.3)

By omparing (1.1) and (1.3), we see that the uid quantities are related to the

salar �eld quantities by

p = L (1.4)

(�+ p)u

�

u

�

= �

�

��

�

� (1.5)

For the e�etive 4-veloity of the salar �eld, we an de�ne a vetor �eld of unit

magnitude via

u

�

=

�

�

�

p

��

�

��

�

�

; (1.6)

whih only provides a meaningful notion of veloity when �

�

� is timelike. Contrat-

ing (1.5), we �nd

�(�+ p) = �

�

��

�

�

or, using (1.2) and (1.4),

� = p+ 2V (�) : (1.7)

For the omplex �elds used in this thesis, the disussion proeeds in the same

manner as above, where V (�) beomes V (j�j), and in whih we de�ne the 4-veloity

as

u

�

=

�

�

j�j

q

��

�

j�j�

�

j�j

: (1.8)

An alternative de�nition would involve a omplex 4-veloity,

~u

�

=

�

�

�

p

��

�

��

�

�

�

; (1.9)
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for whih ~u

a

~u

�

a

= �1, and in whih the real and imaginary parts of ~u provide notions

of the 4-veloities of the real and imaginary parts of the �eld, respetively. With a

omplex 4-veloity the stress-energy tensor takes the form

T

��

= (�+ p)~u

�

~u

��

+ pg

��

: (1.10)

It is perhaps worth noting that in reent work by Shunk and ollaborators

[87, 35, 72℄, as well as the original work of Kaup [62℄, stated that the e�etive

pressure is anisotropi in a boson star, whereas our preeeding disussion indiates

that the e�etive pressure for salar �elds is indeed a salar quantity (namely, the

Lagrangian density). Shunk and ollaborators seem to laim the existene of this

pressure anisotropy on the basis that the stress energy tensor in mixed form, T

�

�

, is

not expressible in the form diag(��; p; p; p) but rather as

T

�

�

= diag(��; p

r

; p

?

; p

?

) ; (1.11)

where p

r

and p

?

are generally di�erent. It seems likely that these authors do not

pursue the idea of de�ning a veloity �eld in the manner desribed in preeeding

paragraphs, sine (as we shall see) the boson star is a standing wave and is not mov-

ing in the usual Shwarzshild-like oordinates, and thus the anisotropi stress (for

omparison to stati uid stars) may be regarded as an anisotropi pressure. Sine

a salar �eld is not a uid, the notion of the �eld \veloity" (and hene \pressure"),

while not entirely arbitrary, may be best hosen aording to the features of the

problem in whih one is interested.

The preeeding disussion is intended to help establish the link between salar

�elds and uids. In addition to the merits of studying salar �eld systems in their

own right, and in addition to the value of suh studies as testbeds for developing

numerial tehniques, the similarities between some properties of salar �elds and

perfet uids provide us with the possibility of deeper understanding of some uid

systems.
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Chapter 2

Theoretial Bakground

2.1 Topis in Relativity

2.1.1 3+1 Deomposition

Often it is useful to view the \timeless" four-dimensional spaetime manifold as a

series of snapshots of three-dimensional spae whih evolve with time. More tehni-

ally, we say that we an deompose the spaetime into a one-parameter foliation of

spaelike hypersurfaes, with the family parameter t serving as a time oordinate.

We often refer to these spaelike surfaes as \slies" through the spaetime, and the

hoie of time oordinate as a hoie of \sliing." In this view we then have three

spatial dimensions plus one time dimension, and hene we attah the name \3+1"

to this view of spaetime. The mathematial formalism assoiated with this view

was presented in de�nitive form by Arnowitt, Deser and Misner [8℄, and hene we

use the term \ADM formalism" to refer to their system.

In the ADM formalism, all dynamial tensor objets exist as 3-dimensional

\spatial" tensors on eah spaelike hypersurfae, and are provided with \time deriva-

tive" quantities whih onnet spatial tensors on one hypersurfae to those on the

next hypersurfae. The oordinate freedom is expressed in terms of the lapse � and
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Σ

Σ
β

τ = α dt

x+∆x

t+∆t

t

x

Figure 2.1: A shemati of the 3+1 deomposition. Here we show a 1+1 dimen-

sional subset of the full spaetime, in whih the time oordinate t advanes roughly

vertially, and the spatial oordinate x advanes in an essentially horizontal dire-

tion. The surfaes �

t

and �

t+�t

de�ne nearby surfaes of onstant t. The amount

of \skew" in the oordinates is given by �

i

, whih is alled the shift vetor. The

amount of proper time � along an interval normal to the spaelike hypersurfaes is

� = �dt.

the shift vetor �

i

, whih are often hosen to vary with position. Figure 2.1 shows a

shemati of the type of oordinates used in the ADM formalism. The lapse de�nes

the relation between oordinate time t and the proper time � measured by observers

moving normally to the spaelike hypersurfaes; this relation is given by � = �dt.

The hyperboli harater of Einstein's equation

G

��

= 8�T

��

allows us to solve the equation by means of an initial value problem, in whih we

speify data on some initial spaelike hypersurfae and determine the geometry of

spaetime at later values of t via a set of equations of motion. Einstein's tensor

equation onsists of 10 equations for 10 variables. Four of these variables an be

hosen arbitrarily as a result of oordinate (or \gauge") freedom. Thus we have an

overdetermined system of 10 equations for six variables. Six of the equations ontain

seond time derivatives of the 3-metri g

ij

and are referred to as evolution equations.

The remaining set of four equations (whih do not ontain seond time derivatives)

are onstraint equations, whih must be satis�ed on eah spaelike hypersurfae

to ensure that the evolution produes valid solutions to Einstein's equation. The
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four onstraints on the six evolution equations imply that there are two degrees of

freedom in the theory, suh as the two polarizations available for gravitational wave

propagation.

The struture of the Bianhi identities tells us that if the initial data satis�es

the onstraint equations, the resulting evolution equations preserve these onstraints

for all time. Numerially, however, these onstraints are solved imperfetly and some

are must given to the spei� form of evolution sheme used in a numerial simula-

tion. The ADM formalism provides only a quasi-hyperboli system of equations to

solve. A host of expliitly hyperboli formalisms [5, 14, 40, 41℄ have reently reeived

attention, and are being implemented in numerial relativity odes [16, 57, 59, 92℄.

(For a review of hyperboli formulations, see the review by Reula [83℄). Neverthe-

less, the ADM formalism has provided the bakbone for evolution odes for many

years, and we will employ it (minimally) in Chapters 3 and 4 for our evolution of

salar �elds in spherial symmetry.

2.1.2 Critial Phenomena

Note: Muh of the disussion in this subsetion is taken from a paper written with

Matthew W. Choptuik [56℄.

Over the past deade, detailed studies of models of gravitational ollapse

have revealed that the threshold of blak hole formation is generially haraterized

by speial, \ritial" solutions. The features of these solutions are known as \ritial

phenomena", and arise in even the simplest ollapse models, suh as a model onsist-

ing of a single real massless salar �eld, minimally oupled to the general relativisti

�eld in spherial symmetry [24℄. Although we present here a brief overview of blak

hole ritial phenomena, we suggest that interested readers onsult the exellent

reviews by Gundlah [45, 46℄ for many additional details.

The impetus for the pioneering study of ritial behavior ame from
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Christodoulou who, in the ourse of his analyti studies of the Einstein-Massless-

Klein-Gordon system in spherial symmetry (f. [31, 32℄) posed the following ques-

tion [25℄: Consider a generi smooth one-parameter family of initial data, suh that

for large values of the parameter p a blak hole is formed, and for small values of

p no blak hole is formed. If one performs a bisetion searh to obtain the ritial

value p

?

for whih blak hole is just barely formed, will this blak hole have �nite or

in�nitesimal mass? Choptuik was able to demonstrate, using sophistiated numer-

ial tehniques, that for a massless salar �eld, the answer to this question is the

latter. In so doing, he observed that all families of initial data near the ritial point

evolve to a single solution, term the \ritial solution", whih serves as intermediate

attrator.

In subsequent studies arried out sine then, it has invariably turned out that

the solutions whih appear in the strongly-oupled regime of the alulations (i.e.

the ritial solution), are almost totally independent of the spei�s of the partiular

family used as a generator. In fat, the only initial-data dependene whih has been

observed so far in ritial ollapse ours in models for whih there is more than one

distint blak-hole-threshold solution. In this sense then, blak hole ritial solutions

are akin to, for example, the Shwarzshild solution, whih an be formed through

the ollapse of virtually any type and/or shape of spherially distributed matter.

In partiular, like the Shwarzshild solution, blak hole ritial solutions possess

additional symmetry (beyond spherial symmetry) whih, to date, has either been

a time-translation symmetry, in whih the ritial solution is stati or periodi, or a

sale-translation symmetry (homethetiity), in whih the ritial solution is either

ontinuously or disretely self-similar (CSS or DSS).

However, in lear ontrast to the Shwarzshild solution, blak hole threshold

solutions are, by onstrution, unstable. Indeed, after seminal work by Evans and

Coleman [38℄ and by Koike et al [64℄, we have ome to understand that ritial
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solutions are in some sense minimally unstable, in that they tend to have preisely

one unstable mode in linear perturbation theory. Thus letting p ! p

?

amounts to

minimizing or \tuning away" the initial amplitude of the unstable mode present in

the system.

Christodoulou's question identi�ed two distint possibilities for blak hole

threshold phenomena, and both types have been observed. Whih type is observed

depends in general upon the type of matter model and the initial data used| some

models exhibit both types of ritial behavior. Historially, Choptuik termed these

Type I and Type II solutions, in a loose analogy to phase transitions in statistial

mehanis, but at least at this junture, we ould equally well label the ritial solu-

tions by their symmetries (i.e. stati/periodi or CSS/DSS) . For Type I solutions,

there is a �nite minimum blak hole mass whih an be formed, and, in aord with

their stati/periodi nature, there is a saling law, � � � ln jp � p

?

j, relating the

lifetime, � , of a near-ritial solution to the proximity of the solution to the ritial

point. Here  is a model-spei� exponent whih is the reiproal of the real part

of the eigenvalue assoiated with the unstable mode. On the other hand, Type II

ritial behavior|less relevant to the urrent study|is haraterized by arbitrar-

ily small blak hole mass at threshold, and ritial solutions whih are generially

self-similar.

The diret onstrution, or simulation, of ritial solutions, has thus far been

performed almost exlusively within the ansatz of spherial symmetry. In the spher-

ial ase one must ouple to at least one matter �eld for non-trivial dynamis, and

spherially symmetri ritial solutions for a onsiderable variety of models have

now been onstruted and analyzed. In addition to the massless salar ase men-

tioned above, these inlude solutions ontaining a perfet uid [38, 74℄, a salar

non-Abelian gauge �eld [30℄, and partiularly germane to the urrent work, a mas-

sive real salar �eld [15℄. The work of Abrahams and Evans [2℄, whih onsidered
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axisymmetri ritial ollapse of gravitational waves, remains notable for being the

only instane of a reasonably well-resolved non-spherial ritial solution. (Stud-

ies involving Brill waves in three dimensions have demonstrated the existene of

super-ritial and sub-ritial solutions, however isolation and study of the ritial

solutions per se will require onsiderably more resolution than that used in those

studies. See [4, 10℄.)

In Chapter 3, we will disuss ritial phenomena assoiated with a massive

omplex salar �eld, whih is observed when a boson star is \perturbed" by a �nely-

tuned pulse of massless real salar �eld.

2.1.3 The Kerr Solution

In Chapter 6, we will onsider the dynamis of a ompled salar �eld oupled to an

eletromagneti �eld, both evolving in a (bakground) Kerr spaetime. The Kerr

solution is a stationary, axisymmetri vauum solution to the Einstein equation.

That is, the Kerr solution possesses two Killing vetor �elds, one timelike and the

other a \rotational" spaelike vetor �eld. In essene, it desribes the spaetime of a

unharged, rotating blak hole. The more general Kerr-Newman solution allows for

the inlusion of a net eletri harge on the blak hole, however suh generality is not

thought to be neessary for astrophysial appliations, sine any harge separation is

expeted to be quikly neutralized via the attration of oppositely-harged matter.

Typially one sees the Kerr line element written in Boyer-Lindquist (BL)

oordinates:

ds

2

= �

�� a

2

sin

2

�

%

2

dt

2

� 2a

2Mr sin

2

�

%

2

dtd'

+

%

2

�

dr

2

+ %

2

d�

2

+

�

%

2

sin

2

�d'

2

; (2.1)

where

� � r

2

� 2Mr + a

2

; (2.2)
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%

2

� r

2

+ a

2

os

2

�; (2.3)

� � (r

2

+ a

2

)

2

� a

2

�sin

2

�; (2.4)

M is the mass of the hole and a the blak hole angular momentum per unit mass.

We will only be onsidering the range a

2

�M

2

.

Kerr-Shild oordinates

Kerr-Shild (KS) oordinates are a \rotational" analogue of the well-known Ingo-

ing Eddington-Finkelstein (IEF) oordinates. KS oordinates an be obtained by

transforming the BL oordinates t and ' into the KS oordinates

~

t and ~' aording

to:

d

~

t+ dr = dt+

2Mr +�

�

dr

d ~' = d'+

a

�

dr :

Thus we arrive at the Kerr line element in KS form:

ds

2

= �

�

1�

2Mr

%

2

�

d

~

t

2

�

4Mar

%

2

sin

2

�d

~

td ~'+

4Mr

%

2

d

~

tdr +

�

1 +

2Mr

%

2

�

dr

2

�

2a

�

1 +

2Mr

%

2

�

sin

2

�drd ~'+ %

2

d�

2

+ sin

2

�

�

%

2

+ a

2

�

1 +

2Mr

%

2

�

sin

2

�

�

d ~'

2

:

(2.5)

Unlike the BL oordinates typially used for studies of astrophysial blak

holes, KS oordinates have no oordinate singularity at the event horizon. KS

oordinates are an example of a \horizon-adapted oordinate system" [39, 77℄.

For a brief disussion of some properties of the Kerr solutions, we follow

d'Inverno [37℄. The Kerr solution possesses two event horizons, r

�

and two surfaes

of in�nite redshift, S

�

. The event horizons our where the surfaes of onstant r

beome null, whih orresponds to where g

rr

is zero. From this we �nd the event
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horizons are given by roots of

� = r

2

� 2Mr + a

2

= 0;

whih are

r

�

=M �

�

M

2

� a

2

�

1=2

: (2.6)

So the event horizons are always surfaes of onstant r, but have smaller radii for

larger values of a. (Again, we are only interested in the regime a

2

� M

2

.) Sine

we will be onerned with solutions exterior to the blak hole, we will only need to

retain the outer event horizon, and will simply refer to r

+

as the \event horizon."

The loation of surfaes of in�nite redshift are found where the t-t omponent

of the metri is zero [37℄. Inspeting the metri (2.5), we see that this ours for

%

2

� 2Mr = 0. This gives us two roots in r,

r

S

�

=M �

�

M

2

� a

2

os

2

�

�

1=2

: (2.7)

Thus, as the blak hole spin inreases, the surfae of in�nite redshift is \pinhed"

along the axis of rotation, as shown in in Figure 2.2.

The region between r

+

and S

+

is alled the ergosphere, in whih the asymp-

toti time translation Killing �eld �

�

= (�=�t)

�

beomes spaelike [100℄. In this

region, an observer annot remain stationary with respet to observers at spatial

in�nity, but must orbit in the diretion of the blak hole's rotation. For this reason,

S

+

is also known as the stationary limit surfae. The ergosphere allows for some

interesting physis, beause in this region the energy of a test partile is not nees-

sarily positive. Penrose [80℄ was the �rst to point out that, in priniple, this implies

that energy an be mehanially extrated from the spin of the blak hole.

2.1.4 The Membrane Paradigm

The Membrane Paradigm (MP) is a view of blak holes intended for appliations

in astrophysis. It was set out by a series of papers in the late 1970's and early
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Figure 2.2: Loations of r+, the outer event horizon, and S

+

, the outer surfae of

in�nite redshift, for three values of a. For a = 0 (dashed lines), r

+

and S

+

are both

spherial, and oinide. As a inreases, r

+

dereases and S

+

beomes more oblate,

extended out from r

+

at the equator but oiniding with r

+

at the poles. We show

data for two nonzero values of a, a = 0:75 (dotted line) and a = 1 (solid line), in

whih the event horizon is the irle on the interior, and S

+

is shown by the urve

exterior to the irle.
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1980's, and presented ohesively in a book [99℄. We will not attempt to go into the

mathematial details of the MP, but we mention it beause of its signi�ane for

astrophysis, for its partiular utility in desribing the Blandford-Znajek proess of

setion 2.3.2, whih we hope to simulate in the future as goal of the salar aretion

study presented in Chapter 6.

In the MP, one onsiders a boundary layer slightly outside the event horizon

to be a material surfae, having properties suh as eletrial resistivity, surfae ur-

rent and harge, temperature and entropy. While it is intended to serve prinipally

as an aid to intuition regarding physial proesses in blak hole astrophysis, the

MP is mathematially rigorous and o�ers an desription idential to that provided

by the usual urved-spaetime viewpoint, for the region of spaetime exterior to a

blak hole. (Inside the event horizon, however, the MP ompletely laks meaning.)

It is worth noting that the mental images and terminology we use to om-

muniate ertain sienti� onepts an have a signi�ant impat on the physial

intuition we have, and on the sorts of questions we ask in researh.

Prior to the mid-1960's, the objets we now refer to as \blak holes" were of-

ten alled \frozen stars." This name arose beause, for stationary observers wathing

the ollapse of a star, the evolution would appear to slow down as the gravitational

redshift inreased, and the evolution would apparently stop when the star reahed

an \in�nite redshift surfae." Suh an objet would forever be \frozen" from the

point of view of distant observers. It was known from the previous work of Oppen-

heimer and Snyder [76℄ that observers freely falling with the star would see no suh

\freezing", but rather would rather see the ollapse right up until the (and their)

very end, when they arrived at the urvature singularity. The term ollapsed star

was used to desribe the physis from the \omoving view" of Oppenheimer and

Snyder. However, this omoving view was not seen as being relevant for astrophys-

ial appliations, beause nothing inside the surfae of in�nite redshift ould ever
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inuene the physis outside. The \frozen star" viewpoint prevented physiists from

realizing that blak holes an be dynamial objets whih an pulsate, radiate and

release energy [98℄.

Later, the \blak hole viewpoint" beame popular with the advent of global

analysis of blak hole spaetimes, in whih oordinate systems suh as those intro-

dued by Eddington and Finkelstein, rather than Shwarzshild oordinates, beame

systems of hoie for desriptions of stellar ollapse. The onformal diagrams popu-

larized by Penrose [79, 81℄ served as powerful illustrations of the global properties of

blak hole spaetimes. Rather than \frozen stars", blak holes were seen as regions

of spaetime from whih nothing ould get out, and the surfae of in�nite redshift

was given the name \horizon" to desribe the disonnetedness of the spaetime

inside the Shwarzshild radius from the outside world. Hawking and others pro-

vided theorems regarding ertain aspets of the dynamis of the horizon. All of

the mathematis assoiated with the \blak hole viewpoint" were equivalent to the

mathematis of the \frozen star" viewpoint, yet the use of the former harted a

ourse of researh that the latter ould not provide.

Somewhat later, it was noted that the inuene of a nearby gravitating body

an distort the horizon of a blak hole, and also that a nearby eletri harge an

produe a hange in the �elds in the viinity of the hole just as if there were a harge

separation (i.e. eletrial polarization) indued on the horizon itself [48℄. Further

work �lled in more ways in whih eletromagnetism in the viinity of the horizon

an be likened, even mapped, to the physis nearby a material membrane, having

properties like resistivity and surfae urrent [36℄, and temperature [50℄.

We will employ the Membrane Paradigm only briey in this dissertation, to

help provide an intuitive understanding of the Blandford-Znajek proess (Setion

2.3.2), however we re-emphasize that this paradigm provides a view of blak holes

whih is helpful to astronomers in a wide variety of appliations.
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2.2 Finite Di�erene Methods

This thesis deals with the appliation of �nite di�erene tehniques. There are

many other numerial methods available to researhers; most ommonly, spetral

methods and �nite element methods. Finite di�erene methods an often be simpler

to implement than other methods, partiularly for solving systems of equations on a

domain with regular boundaries. We present here a brief overview of some relevant

aspets of �nite di�erene methods.

Di�erene Operators

We onstrut �nite di�erene operators via Taylor expansion in the mesh spaing.

For example, suppose we wish to solve the transport equation,

�

t

u = �

x

u;

on a grid using �nite di�erene tehniques. This equation also admits losed-form

analyti solutions whih makes it a useful test ase. Instead of the atual solution

u(t; x) to the ontinuum equations, we work with û

n

j

, the solution to the �nite

di�erene equations. We desire that û

n

j

is very nearly the same as u(n�t; j�x) for

all n and j, but ensuring some level of auray in our �nite di�erene solution

requires that we maintain some level of auray in the �nite di�erene equations

themselves. Consider the partial derivative �

x

u. A �nite di�erene approximation

for this might be

û

n

j+1

� û

n

j�1

2�x

: (2.8)

How aurate of an �nite di�erene expression is this? Let us onstrut two

Taylor expansions about u(t = n�t; x = j�x):

û

n

j+1

= u(t; x) + �x�

x

u(t; x) + 1=2�x

2

�

2

x

u(t; x) +O(�x

3

) (2.9)

20



û

n

j�1

= u(t; x)��x�

x

u(t; x) + 1=2�x

2

�

2

x

u(t; x) +O(�x

3

) (2.10)

(2.11)

Subtrating the seond equation from the �rst and dividing by 2�x gives us

û

n

j+1

� û

n

j�1

2�x

= �

x

u(t; x) +O(�x

2

):

We label the auray of an operator by the order of the terms whih are

negleted in the expansion, and thus we say that (2.8) is seond order aurate.

Convergene

We would like some assurane that the solutions we obtain from the �nite di�erene

ode are atually good approximations to the solutions of the ontinuum equations.

As we derease harateristi size h of the mesh spaing, the grid funtions ome

loser to de�ning quantities on a ontinuum, and the �nite di�erene operators

approah the partial derivatives. Thus we expet the �nite di�erene solutions to

onverge to the \true solutions" in the limit h! 0.

In his 1910 paper, L.F. Rihardson [85℄ desribed the relationship between

the error of a �nite di�erene alulation and the mesh spaing h. Consider a

(ontinuum) di�erential system denoted by

Lu = f (2.12)

where L is some di�erential operator, f is a spei�ed funtion, and u is the solution

to the equation. Reduing this to a �nite di�erene system involves using a �nite

di�erene approximation

^

L of L (onstruted via the Taylor expansion method men-

tioned above), with the orresponding

^

f (=f restrited to the mesh) and the �nite

di�erene solution û:

^

Lû =

^

f : (2.13)
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We will also refer to û as a grid funtion. We then de�ne the trunation error �̂ to

be

�̂ �

^

Lu�

^

f ; (2.14)

For entered di�erene operators

^

L, the trunation error will be an even power series

in the mesh spaing h. The trunation error is related to the solution error ê � u� û

by

�̂ =

^

L (û+ ê)�

^

f =

^

Lê:

Rihardson noted that, in the limit h ! 0 for entered di�erene equations, the

solution error ê will also appear as a even-powered series in the mesh spaing h, are

related by

ê = h

2

e

2

+ h

4

e

4

+ ::: (2.15)

where e

2

, e

4

, et. are smooth \error funtions" whih are independent of the mesh

spaing. We refer to (2.15) as a Rihardson expansion.

For problems in whih the ontinuum solution u is not known, we annot

obtain an exat measure of the solution error or the trunation error. Using (2.15)

and �nite di�erent solutions û

h

and û

2h

obtained on two di�erent grids with spaings

h and 2h respetively, we an obtain approximations to these error quantities:

û

2h

� û

h

h

2

= 3e

2

+ 15h

2

e

4

+ ::: ; (2.16)

where the subtration is performed on the intersetion of û

h

and û

2h

.

We an hek the onvergene of our numerial ode by observing how well

the solutions obey the properties of Rihardson extrapolation. If the ode is on-

verging properly, then three grid funtions û

h

, û

2h

and û

4h

, obtained on grids with

spaings h, 2h and 4h, respetively, should to leading order produe the same error

funtion e

2

. Given that

û

4h

� û

2h

h

2

= 12e

2

+ 15h

2

e

4

+ ::: ;
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we �nd proper seond-order onvergene when

û

4h

� û

2h

' 4

�

û

2h

� û

h

�

:

To obtain a measure of the global onvergene of the sheme, we �rst de�ne the L

2

norm jjûjj

2

to be

jjûjj

2

=

"

1

N

N

X

i=1

ju

i

j

2

#

1=2

;

whereN is the number of elements (grid points) in û. We then de�ne the onvergene

fator Q as

Q �

jjû

4h

� û

2h

jj

2

jjû

2h

� û

h

jj

2

; (2.17)

for whih global seond-order onvergene is indiated by Q = 4.

The assumption of Rihardson expandability is essential to the Berger and

Oliger adaptive mesh re�nement method desribed in Chapter 5, beause we will

use Rihardson expansion to obtain an estimate of the loal trunation error to

determine where new grids should be plaed.

Stability

Usually we wish to evolve from some initial state towards some �nal state, and would

like to minimize the amount of omputational work in between. One might ask the

question \How large of a time step an I take?" The answer depends on the nature

of the numerial sheme and the resolution of the grid. This question is losely

related to the work of Courant, Friedrihs and Levy (CFL) desribed in [47℄ and

[82℄. The rule of thumb produed by CFL an be summed up in the following: For

stability, the numerial domain of dependene must inlude the physial domain of

dependene. Figure 2.3 shows a piture of this. Stritly speaking, this only applies

to truly hyperboli systems in whih harateristis are well-de�ned.

For the boson star study in Chapter 3, the simulation ode uses an expliit

sheme alled the \leapfrog" sheme, for whih the CFL ondition will be of im-
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Figure 2.3: Shemati of the CFL ondition. This shows an expliit numerial

sheme, for whih the numerial domain of dependene of a grid point at the ad-

vaned time level n+ 1 (blak dot) is bounded by the grid points on either side at

the previous time n.

portane. For the salar aretion study of Chapter 6, we will endeavor to use an

impliit Crank-Niholson method, for whih the numerial domain of dependene is

the entire omputational (spatial) domain. A more rigorous stability onsideration

due to Von Neumann (desribed in [6℄) shows the Crank-Niholson method to be

unonditionally stable.

2.3 Topis in Blak Hole Aretion

2.3.1 General Review

Shakura and Zunyaev [93℄ presented the �rst signi�ant studies of blak hole are-

tion, in whih they oneived that a gas loud with an initial angular momentum

would ollapse to form an aretion disk, with some of the material falling into the

blak hole. In partiular, these studies onsidered a model of a thin disk, in whih

the height of the disk was very small ompared to the disk radius. It was previously

assumed that some sort of dissipative mehanism would be ative in the disk, per-

haps gas visosity or turbulene, but no one was quite lear on what the soure of

this dissipation should be. Shakura and Zunyaev bypassed muh of this ambiguity

via their \�-Model", in whih the total e�et of whatever dissipative mehanisms
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were ative in the disk ould be summed up by a single visosity parameter, whih

they alled �. The role of magneti �elds was often negleted in early studies of

aretion. For a long time the spei� avenue for angular momentum onserva-

tion was a major mystery in astrophysis. Reently, John Hawley [51℄ has shown

via three-dimensional numerial simulation that magnetohydrodynami turbulene

provides suÆient transport of angular momentum. We onsider here two important

proesses involving magneti �elds in highly energeti astrophysial systems.

2.3.2 The Blandford-Znajek Proess

In the Blandford-Znajek proess [13℄, we have a virtual \iruit" in whih magneti

�elds lines threading the blak hole at like wires. This mehanism is best explained

via the Membrane Paradigm of setion 2.1.4.

First onsider a simple system in whih a spinning, spherial ondutor is

plaed in a uniform magneti �eld

~

B = B

z

^

k. The fat that the ondutor is spinning

in this �eld means that harges will move along the surfae, with an overabundane

of positive harges aumulating at the equator, and an overabundane of negative

harges aumulating near the poles, until some fore balane is set up between the

magneti fore and the indued eletri fore. Thus the spinning sphere beomes

a battery. We an onnet a resistive load to this battery by adding wires whih

touh and slip along the poles equator and poles as shown in �gure 2.4, and drive a

urrent through the load, thus \extrating energy" from the spinning ondutor to

the load.

Now instead of a typial ondutor, imagine that we are dealing with the

membrane-like horizon of a blak hole, and instead of wires, we have magneti �eld

lines along whih harged plasma an stream. By \hooking up" some resistive load

to these \wires", we an extrat energy from the indued eletromotive fore on the

blak hole horizon. This is the essene of the Blandford-Znajek proess, a shemati
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Figure 2.4: A spinning spherial ondutor as a battery. The uniform magneti �eld

~

B = B

z

^

k indues a harge separation between the equator and poles, whih when

onneted via wires an drive urrent I through a resistive load R

Load

.

of whih is shown in Figure 2.5.

Imagine that in some region lose to the blak hole, magneti �elds are strong

enough that a fore-free magnetosphere is set up, i.e. harges an only ow along

magneti �eld lines, i.e.

F

��

J

�

= 0:

Through some proess suh as partile-antipartile pair reation, we obtain a sit-

uation in whih positive harges ow into the hole along the poles, and negative

harges ow in at the equator.

At some distane away from the blak hole, the \fore-free" approximation

will fail, and eletri equipotential surfaes will deviate from magneti �eld lines.

These surfaes will \onnet up" over the poles, and we will have a net eletri �eld

in the vertial diretion. Blandford and Znajek speulated that the resistive \load"

in this system might therefore take the form of jets of harged partiles, whih are

aelerated via these vertial �eld lines. This provided a natural explanation for

the highly-ollimated, high-speed jets whih are observed to originate near some

ompat astrophysial soures.
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Figure 2.5: A shemati of the Blandford-Znajek mehanism. Positive harges

stream inward along magneti �eld line 1, and negative harges stream inward along

�eld line 2. Equipotential surfaes are shown as dotted lines. (The author's render-

ing of a �gure in [99℄.)

2.3.3 Magneti Torques at the Marginally Stable Orbit

Early models of aretion [93℄, [75℄ were performed within the thin-disk model with

what is alled a \no-torque" boundary ondition at the marginally stable orbit

(MSO), whih is generally onsidered to be the inner edge of the aretion disk.

For the no-torque ondition, uid whih reahes the MSO is assumed to freely fall

into the blak hole, and have no e�et on the exterior part of the aretion disk.

In other words, the sort of visous torques whih were assumed to be operating

throughout the disk (suh as in Shakura and Sunyaev's �-model) were assumed to

be ompletely negligable at and inside the MSO. The no-torque inner boundary

ondition was justi�ed via an argument that infalling gas would quikly beome

ausally disonneted from the rest of the disk by nature of a low sound speed [75℄.

From this assumption, one an derive expressions for aretion eÆieny (onversion

of rest mass into radiation) whih range from 5% for gas falling into Shwarzshild

blak holes to 42% for gas falling into maximally-rotating (a

2

= M

2

) Kerr blak
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holes [75℄. A short time ago, Charles Gammie [42℄ began to seriously onsider

the e�et of magneti �elds on aretion eÆieny. Gammie knew that magneti

�elds ould exert a torque, and that perhaps the no-torque boundary ondition

was not appliable to astrophysial, magnetized aretion disks. In fat, he found

that the aretion eÆieny an be greatly enhaned by the presene of magneti

�elds, and an even exeed unity. In other words, Gammie found senarios in

whih energy was being extrated from the blak hole via the magneti torque.

Eri Agol and Julian Krolik further explored the impliations of magneti torques

operating at the marginally stable orbit [3℄. A most reent ontribution on this

subjet is the work of J. Hawley and Krolik [53℄, who show via numerial simulation

that there an be signi�ant (magneti) torque at the marginally stable orbit, and

that this torque is in fat ontinuous aross the \inner boundary" of the aretion

disk. The salar aretion study onsidered in Chapter 6 of this thesis was in part

aimed at obtaining results regarding the signi�ane of magneti torques at the inner

boundary. The new work by Hawley and Krolik appears to provide the answers we

were originally searhing for, however we still hope to �nd many interesting and

unexpeted phenomena in the harged salar system.
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Chapter 3

Critially-Perturbed Boson Stars

Note: Most of the results and disussion given in this hapter are from a paper whih

M.W. Choptuik and I reently submitted to Phys. Rev. D. [56℄.

3.1 Introdution

Our urrent interest is a ritial-phenomena-inspired study of the dynamis assoi-

ated with \boson stars" [62, 86, 34℄, a lass of equilibrium solutions to the Einstein-

Klein Gordon system for massive omplex �elds, whih are supported against grav-

itational ollapse by the e�etive pressure due to the dispersive nature of a massive

Klein-Gordon �eld. Studies of boson stars began with the works of Kaup [62℄ and

RuÆni and Bonnazola [86℄, who demonstrated that stable equilibrium on�gura-

tions exist for self-gravitating massive Klein-Gordon �elds. These on�gurations

are supported against gravitational ollapse by the e�etive pressure due to the dis-

persion relation of the Klein-Gordon �eld. Later this work was extended by Colpi

et al. [34℄ to inlude a nonlinear self-interation term whih an give rise to an ad-

ditional pressure, and an allow for larger boson stars having masses and sizes more

relevant to astrophysial appliations. Preditions from partile physis regarding
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the existene of one or more salar or pseudo-salar partiles kindled greater interest

in the study of boson stars as astrophysial objets, perhaps as a ontribution to

dark matter in the universe. Some astrophysial aspets of boson stars have been

investigated by Lee and Koh [66℄ and D�abrowski and Shunk [35℄. Stability studies

of boson stars ontinued with Gleiser and Watkins [43℄, as well as Lee and Pang [67℄,

who showed that there exists a ritial value of the entral density whih marks the

transition between boson stars whih are stable with respet to in�nitesimal radial

perturbations and those whih are not. Dynamial stability studies were arried out

by Seidel and Suen [89℄ in whih radial perturbations to equilibrium on�gurations

were applied by adding or removing mass from a setion of the star. They then

solved for the resulting evolution numerially, and found that a boson star on the

unstable branh will either form a blak hole or radiate salar material and form

a boson star on the stable branh. They also showed that perturbed stable boson

stars will osillate with a harateristi frequeny whih depends on the mass of the

star. Along with Balakrishna, Seidel and Suen later extended this work to inlude

the e�ets of self-interating �elds and \exited" states in whih the �eld ontains

one or more nodes [9℄. They found that all exited states are unstable and either

form blak holes or radiate salar material until a stable \ground state" (zero node)

boson star is formed. Their stability study will be extended in this hapter, in whih

we onsider large radial perturbations of a boson star whih drive it to the threshold

of blak hole formation. For further reviews on the subjet of boson stars, see Jetzer

[61℄ or Mielke and Shunk [71℄.

As mentioned in Chapter 2, a paper losely related to this work is that of

Brady et al. [15℄, whih desribed a dynamial study of ritial solutions of a massive

real salar �eld. Those authors demonstrated senarios in whih blak holes ould

be formed with arbitrarily small mass (Type II transitions), and those in whih the

blak holes formed had a �nite minimum mass (Type I transitions). The boundary
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between these regimes seemed to be the relative length sale of the pulse of initial

data ompared to the Compton wavelength assoiated with the boson mass. Initial

data whih was \kineti energy dominated" evolved in a manner essentially similar

to the evolution of a massless salar �eld. Initial data pulses having widths larger

than the length sale set by the boson mass were \potential dominated", providing a

harateristi sale for the formation of the ritial solutions. Brady et al. found that

the resulting Type I ritial solutions orresponded to a lass of equilibrium solutions

disovered by Seidel and Suen [90℄, whih are alled \osillating soliton stars." These

soliton stars share many harateristi with the omplex-valued boson stars, suh

as the relationship between the radius and mass of the star. Both types of \stars"

have a maximum mass, and show the same overall behavior as \real" (fermion) stars

in terms of the turn-over in their respetive stability urves. Interestingly, although

the soliton stars are not stati|they are periodi (or quasi-periodi)|many of the

same marosopi properties seen in uid stars are still observed.

In this hapter, we onstrut ritial solutions of the Einstein equations ou-

pled to a massive, omplex salar �eld dynamially, by simulating the implosion of

a spherial shell of massless real salar �eld around an \enlosed" boson star. The

massless �eld implodes toward the boson star and the two �elds undergo a (purely

gravitational) \ollision." The massless pulse then passes through the origin, ex-

plodes and ontinues to r ! 1, while the massive omplex (boson star) �eld is

ompressed into a state whih ultimately either forms a blak hole or disperses. We

an thus play the \interpolation game" using initial data whih result in blak hole

formation, and initial data whih give rise to dispersal: spei�ally, we vary the

initial amplitude of the massless pulse to tune to a ritial solution. We analyze the

blak hole threshold solutions obtained in this manner, and disuss the similarities

between our ritial solutions for the self-gravitating omplex massive salar �eld

and boson stars on the unstable branh. To further this disussion, we extend the
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work of Gleiser and Watkins [43℄ and ompare the results of the simulations with

those of linear perturbation theory.

The layout of the remainder this hapter is as follows: In Setion 3.2, we

desribe the mathematial basis for our numerial simulations. In Setion 3.3, we

present results from our simulations, in whih the Type I harater of the ritial

solutions is demonstrated, along with the lose similarities one �nds between the

features of the ritial solutions and those of boson stars. In most of the ritial

solutions we �nd a halo of mass near the outer edge of the solution whih is not a

feature of boson star equilibrium data. Inside this halo, however, the ritial solu-

tions math the boson star pro�les very well. In Setion 3.4, we give a synopsis of

our linear stability analysis of boson star quasinormal modes, from whih we obtain

the boson star mode frequenies as funtions of the entral value of the modulus of

the omplex �eld. Setion 3.5 onerns the radial pro�les of the perturbative modes

per se, and inludes a omparison of the mode shapes and frequenies obtained from

perturbation theory with our simulation data. The modes obtained by these two

di�erent methods agree well with eah other, although the additional osillatory

mode in our simulation data is only shown to agree with the orresponding boson

star mode in terms of the osillations in the metri and not in the �eld (possibly as

an artifat of our simplisti approah to extrating this mode from the simulation).

In Setion 3.6 we provide further disussion regarding the properties of the halos

surrounding the ritial solutions. Conlusions are given in Setion 3.7. The ap-

pendies of this dissertation give tables of mode frequenies versus the entral �eld

value of the boson star, details about our �nite di�erene ode, and details of our

linear stability analysis, whih inludes a desription of our algorithm for �nding

the frequenies of boson star modes.
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3.2 Salar Field Model

A boson star is desribed by a omplex massive salar �eld �, minimally oupled to

gravity as given by general relativity. We work solely within the ontext of lassial

�eld theory, and hoose units in whih G and  are unity. Furthermore, sine all

lengths in the problem an be saled by the boson mass m [34℄, we hoose m = 1.

To the usual boson star model, we add an additional, massless real salar �eld, �

3

,

whih is also minimally oupled to gravity. This additional salar �eld will be used

to dynamially \perturb" the boson star.

The equations of motion for the system are then the Einstein equation and

Klein-Gordon equations:

G

��

= R

��

�

1

2

g

��

R = 8�
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��
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; (3.5)

and 2 is the D'Alembertian operator. While more general potentials in (3.2) have

been employed reently [9, 88℄, we will restrit our disussion to the simplest ase,

i.e. merely the m

2

�

2

potential. We also stress that the omplex salar �eld, �, and

the massless, real salar �eld, �

3

are oupled only through gravity|in partiular we

do not inlude any interation potential V

I

(�; �

3

).

Restriting our attention to spherial symmetry, we write the most general

spherially-symmetri metri using Shwarzshild-like \polar-areal" oordinates

ds

2

= ��

2

(t; r)dt

2

+ a

2

(t; r)dr

2

+ r

2

d


2

; (3.6)
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and generally make use of the \3+1" formalism of Arnowitt, Deser and Misner [8℄

whih regards spaetime as a foliation of spaelike hypersurfaes parameterized by

t (f. Setion 2.1.1.

We write the (spherially-symmetri) omplex �eld, �(t; r), in terms of its

omponents

�(t; r) = �

1

(t; r) + i�

2

(t; r) (3.7)

where �

1

(t; r) and �

2

(t; r) are eah real. Again, sine our model inludes no self-

interation (anharmoni) potential for the omplex �eld, �

1

and �

2

are only oupled

through the gravitational �eld.

We then de�ne

�
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where

0

� �=�r and _� �=�t:

With these de�nitions, the equations we solve are the Hamiltonian onstraint,

a

0

a

=

1� a

2

2r

+

r

2

h

�

1

2

+�

2

2

+�

3

2

+�

1

2

+�

2

2

+�

3

2

+ a

�

�

1

2

+ �

2

2

�i

; (3.11)

(where �
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), the sliing ondition,
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and the Klein-Gordon equations,

_
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k
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where k = 1; 2; 3 and Æ

3k

is a Kroneker delta used to denote the fat that �

3

is a

massless �eld.
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We also have equations whih are used to update the spatial gradients of the

salar �elds, as well as the salar �elds themselves. These follow diretly from the

de�nitions (3.8) and (3.9):

_

�

k

=

�

�

a

�

k

�

0

(3.14)

�

k

=

Z

r

0

�

k

d~r (3.15)

Equations (3.11){(3.15) are solved numerially using the seond order �nite di�er-

ene method desribed in Appendix B.

Initial onditions for our simulations are set up as follows. First, initial data

for the massive �eld are onstruted from the boson star ansatz

�(t; r) = �

0

(r)e

�i!t

; (3.16)

where we let �

0

(r) be real. Substitution of this ansatz into the full set of equations

(3.11)-(3.15), yields a system of ordinary di�erential equations (ODEs), whose so-

lution, for a given value of the entral �eld modulus, is found by \shooting", as

desribed in [86℄. One the boson star data is in hand, we add the perturbing mass-

less �eld by freely speifying �

3

and �

3

. At this point, all matter quantities have

been spei�ed; the initial geometry, a(0; r) and �(0; r) is then �xed by the onstraint

and sliing equations (3.11) and (3.12).

In relating the simulation results whih follow, it is useful to onsider the

individual ontributions of the omplex and real �elds to the total mass distribution

of the spae-time, in order that we an meaningfully and unambiguously disuss, for

example, the exhange of mass-energy from the real, massless �eld to the massive,

omplex �eld. By Birkho�'s theorem, in any vauum region, the mass enlosed

by a sphere of radius r at a given time t is given by the Shwarzshild-like mass

aspet funtion M(t; r) = r(1� 1=a

2

)=2. However, at loations oupied by matter,

M(t; r) annot neessarily be usefully interpreted as a \physial" mass. In polar-

areal oordinates, the mass aspet funtion is related to the loal energy density
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�(t; r) by

�M(t; r)

�r

= r

2

�(t; r); (3.17)

with �(t; r) given in our ase by

�(t; r) =

1

2a

2

h

�

1

2

+�

2

2

+�

1

2

+�

2

2

+ a

2

�

�

1

2

+ �

2

2

�i

+

1

2a

2

h

�

3

2

++�

3

2

i

:

(3.18)

Here, we have expliitly separated the ontributions from the omplex and real

�elds. Sine �M=�r is given by a linear ombination of the ontributions from eah

�eld, we an deompose �M=�r so that, in instanes where there is no overlap in the

supports of the distint �elds, we an unambiguously refer to the mass due to one

�eld or the other. That is, we an refer to the individual ontributions of eah �eld

to the total mass as being physially meaningful masses in their own rights. Then,

by integrating the ontribution of eah �eld to �M=�r over some range of radius

(r

min

� � � r

max

), (where there is some region of vauum starting at r

min

and extending

inward, and some region of vauum starting at r � r

max

and extending outward),

and demanding that none of the other type of �eld is present in the domain of

integration, we an obtain a measure of the mass due to eah �eld.

Motivated by suh onsiderations, we de�ne an energy density for the om-

plex �eld, �

C

, as

�

C

(t; r) =

1

2a

2

h

�

1

2

+�

2

2

+�

1

2

+�

2

2

+ a

2

�

�

1

2

+ �

2

2

�i

; (3.19)

with a orresponding mass aspet funtion, M

C

(t; r), given by

M

C

(t; r) =

Z

r

0

~r

2

�

C

d~r : (3.20)

Similarly, the energy density due to the real �eld is de�ned as

�

R

(t; r) �

1

2a

2

h

�

3

2

++�

3

2

i

; (3.21)

with a orresponding mass aspet funtion, M

R

(t; r) given by

M

R

(t; r) =

Z

r

0

~r

2

�

R

d~r:
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We again emphasize that in regions where the supports of the di�erent �elds

overlap (and in non-vauum regions in general) it may not be possible to asribe

physial meaning to the individual mass aspet funtions de�ned above. (However,

even in suh instanes, these funtions are still useful diagnostis.) Most impor-

tantly, where the supports of the �elds do overlap, and only in these regions, it is

possible for mass-energy to be exhanged from one salar �eld to the other|through

the gravitational �eld|while the sumM

C

+M

R

=M (measured in an exterior va-

uum region) is onserved. The quantities given above allow us to measure this

exhange of mass by looking at the pro�les M

C

(t; r) and M

R

(t; r) before and after

a time when the �elds are interating. This is shown in the next setion.

As a further onsideration, we point out that the U(1) symmetry of the

omplex �eld implies that there is a onserved Noether urrent, J

�

, given by

J

�

=

i

8�

g

��

(��

�

�

�

� �

�

�

�

�): (3.22)

The orresponding onserved harge or \partile number" N is

N =

Z

1

0

r

2

p

�gJ

t

:

We may also wish to regard N as a funtion of t and r by integrating the above

funtion from zero to some �nite radius, in whih ase

�N(t; r)

�r

= r

2

(�

1

�

2

��

2

�

1

) : (3.23)

Some authors have onsidered the di�ereneM

C

�mN to be a sort of \bind-

ing energy" of the omplex �eld [61℄, however this quantity does not orrespond to

any transition in the stability of boson stars, and we have not found it to be very

useful in understanding the dynamis of our simulations.

Finally, following Seidel and Suen [89℄, we de�ne a radius R

95

(t; r) for the

boson star impliitly byM

C

j

R

95

= 0:95M

C

j

r!1

. Alternatively, we will also onsider

a radius R

63

(t; r) whih enloses (1�e

�1

) � 63% ofM

C

j

r!1

, and whih will inlude

the \bulk" of a boson star but will neglet the \tail".
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3.3 Simulation Results

We hoose the initial data for the omplex �eld to be a boson star at the origin,

with a given entral density �

0

(0). For the massless �eld �

3

(0; r), we hoose one of

the families in Table 3.1. We generate ritial solutions by tuning the amplitude A

of �

3

(0; r) (holding the position r

0

and width � onstant) using a bisetion searh,

until the resulting solution is arbitrarily lose (i.e. within some spei�ed preision)

to the point of unstable equilibrium between dispersal and blak hole formation.

Figure 3.1 shows a series of snapshots from a typial simulation in whih the

parameter p (p � A), is slightly below the ritial value p

?

, for a boson star on

the stable branh with a mass of M = 0:59M

2

P l

=m, where M

P l

is the Plank mass.

(The boson mass m has units of inverse length, so the orresponding physial mass

is m�h=, and we use �h = 1.) The shell of massless �eld, a member of initial data

Family I, implodes through the boson star and explodes bak out from the origin,

and the gravitational interation between the �elds fores the boson star into a new

state, a \ritial solution." We see from this animation, and from Figure 3, that

dispersal from the ritial state does not mean that the boson star returns to its

original stable on�guration, but rather that the star beomes strongly disrupted

and \explodes." That is to say, if we were to follow the evolution beyond t = 475,

the massive �eld would ontinue to spread toward spatial in�nity. At some late

time, after a large amount of salar radiation has been emitted, the end state would

probably be a stable boson star with very low mass.

The gravitational interation between the two �elds results in an exhange of

energy from the massless �eld to the massive �eld, as shown in Figure 3.2. Figure 3.3

shows some timelike slies through the simulation data, giving a plot of the maximum

value of a, the value of j�j at the origin, and the radius R

95

as funtions of time.

These are given to help eluidate the point that the ritial solution osillates about

some loal equilibrium, before dispersing or forming a blak hole. The lifetime of
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Figure 3.1: Evolution of a perturbed boson star with �

0

(0) = 0:04 �

p

4� and

mass M

C

= 0:59M

2

P l

=m. This shows ontributions to �M=�r due to the massive

�eld (solid line) and massless �eld (dashed line). We start with a stable boson star

entered at the origin, and a pulse of massless �eld given by Family I with r

0

= 30

and � = 8. (We see two peaks in dM=dr of the massless �eld beause it is only the

gradients of �

3

, not �

3

itself, whih ontribute to M

R

(r; t).) In the evolution shown

above, the pulse of massless �eld enters the region ontaining the bulk of the boson

star (t ' 15), implodes through the origin (t ' 30) and leaves the region of the

boson star (t ' 50). Shortly after the massless pulse passes through the origin, the

boson star ollapses into a more ompat on�guration, about whih it osillates for

a long time before either forming a blak hole or dispersing. (The ase of dispersal

is shown here.) Note that the perturbing �eld �

3

passes through the boson star and

exits the region ontaining most of the star, even before the massive �eld reahes its

denser, ritial state. Thus the massless �eld is not part of the ritial solution per

se. Blak hole formation (always with a �nite blak hole ADM mass in our study)

an take plae at times long after the massless pulse has left the neighborhood of

the boson star.
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Table 3.1: Families of initial data. For both families, the initial data, �(0; r) =

�

1

(0; r)+i�

2

(0; r), for the massive omplex �eld is given by a boson star, obtained by

solving (3.11){(3.13) numerially aording to the ansatz (3.16) (with the parameter

! found via \shooting"). The initial real massless �eld pro�le, �

3

(0; r), is given in

losed form by the \gaussian" and \kink" initial data. For eah family, we also

hoose �

t

�

3

(0; r) suh that the pulse is initially in-going, �.e. �

3

(0; r) = �

3

(0; r) +

�

3

(0; r)=r.

Family Complex Field �

1

+ i�

2

Real Field �

3

Name Parameters Pro�le Name Parameters Pro�le

I Boson Star �

0

(0) �

0

(r) Gaussian A; r

0

;� A exp

 

�

�

r � r

0

�

�

2

!

I I Boson Star �

0

(0) �

0

(r) Kink A; r

0

;�

A

2

�

1 + tanh

�

r � r

0

�

��

the ritial solution inreases monotonially as p ! p

?

. Figure 3.4 shows that the

saling law expeted for Type I transitions is exhibited by these solutions.

Figure 3.5 shows the mass vs. radius for some ritial solutions along with

the equilibrium urve for boson stars. We notie that there are great similarities, at

least for relatively high mass on�gurations, between the ritial solutions and un-

stable boson stars in the ground state. (We do not perform studies involving boson

stars with muh lower masses, beause of the dynami range required for the spatial

resolution of the �nite di�erene ode. Also, for a given jp � p

?

j, suh low-mass

ritial solutions have muh shorter lifetimes than larger-mass solutions; thus it an

be more diÆult to measure time-averaged properties.) When we inlude nearly

all of the omplex-salar mass in our omparisons, as shown in Figure 3.5(a), we

see that the time-averaged properties of the ritial solutions with lower masses, i.e.

those further from the transition to instability, deviate from the urve of equilibrium

on�gurations, and that the deviation inreases as mass dereases. When we on-

sider only the bulk of the boson star, however, we see very good agreement between

the dynamially generated ritial solutions and the unstable boson stars, omputed

from the stati ansatz, as shown in Figure 3.5(b). The omparison between low-mass
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Figure 3.2: Exhange of energy between the real and omplex salar �elds. For this

simulation, initial data from Family I was used, with �

0

(0) = 0:04 �

p

4�, r

0

= 40

and � = 8. The solid line shows the mass of the omplex �eld, shifted upward on

the graph by 0:21M

2

P l

=m. The long-dashed line shows the mass of the real �eld,

shifted upward by 0:55M

2

P l

=m. The mass �M exhanged from the massless �eld

to the massive �eld in this simulation is nearly 0.0053, or about 2.5% of the mass

of the real �eld (9% of the boson star mass). The amount (and perentage) of

mass transfer goes to zero as we onsider boson star initial data approahing the

transition to instability (see, e.g. Figure 7). The dotted line near the top of the

graph shows the total mass enlosed within r = 100. Throughout the simulation,

both the total mass M = M

C

+M

R

and the partile number N (of the omplex

�eld) are onserved to within a few hundredths of a perent.
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Figure 3.3: Quantities desribing a near-ritial solution. Here we show timelike

slies through the data shown in Figure 3.1, an evolution that ends in dispersal.

Top: Maximum value of the metri funtion a (for eah spaelike hypersurfae

parameterized by t). The loal maximum at t ' 40 is due to the presene of the

pulse of massless �eld. Middle: Central value j�(t; 0)j of the massive �eld. Bottom:

Radius R

95

whih ontains 95% of the mass-energy in the omplex �eld. Again,

we see evidene that after the remaining in ritial regime for a while, the star an

\explode", leaving a di�use remnant with low mass.
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Figure 3.4: Lifetime � of a typial set of near-ritial solutions vs. ln jp � p

?

j. We

use initial data from Family I. The lifetime of the ritial solution obeys a simple

saling relation. Using super-ritial solutions, we measure � to be the time from

t = 0 until blak hole formation ours. The relationship shown in the graph an

be desribed by � = � ln jp� p

?

j, where for the data shown in this graph,  ' 9:2

The value of  an be related to the imaginary part of the Lyapunov exponent �

of the unstable mode (� e

i�t

) by =(�) = 1= ' 0:109: This value is the same as

that obtained from a linear perturbation analysis of the spei� boson star to whih

we believe this on�guration is asymptoting (See Setion 3.5). We note that in the

limit p! p

?

, the mass of the blak hole formed is �nite (and lose to the mass of the

progenitive unstable boson star), i.e. the system exhibits Type I ritial behavior.
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Figure 3.5: Mass vs. radius for equilibrium on�gurations of boson stars (solid line),

initial data for the omplex �eld (triangles), and ritial solutions (squares). Arrows

are given to help math initial data with the resulting ritial solutions. Points on

the solid line to the left of the maximum mass M

max

' 0:633M

2

P l

=m orrespond

to unstable boson stars, whereas those to the right of the maximum orrespond to

stable stars. If one takes time averages of properties suh as mass, entral density

j�(t; 0)j and radius R

95

during the ritial regime, one �nds values whih math the

pro�le of a boson star on the unstable branh. The squares show the time average of

eah ritial solution during the osillatory phase. Graph (a) shows mass M versus

R

95

the radius ontaining 95% of M , whereas graph (b) shows M versus the radius

ontaining (1 � e

�1

)M . The agreement between the ritial solutions and boson

stars shown in graph (a) deteriorates with dereasing mass, however the omparison

shown in graph (b), whih neglets the \tail" of the ritial solutions and boson

stars, shows muh better agreement for all masses. (We show the tail region in

Figure 3.6.) In this simulation the massive �eld radiates only a small amount due

to the perturbation by the massless �eld, and so the stable boson star is essentially

driven to \pop" aross the stability urve by the impinging massless pulse.
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ritial solutions and boson stars, shown in Figure 3.5, an be further illuminated

by looking at a pro�le of the mass distribution as shown in Figure 3.6.

We see that there is a small halo near the outer edge of the solution (r = 8),

and it is this whih throws o� our measurement of R

95

used for Figure 3.5. Despite

the e�et this has on the measurement of the radius R

95

of the star, we an still

obtain a good �t of a boson star to the interior of the ritial solution in the low-mass

regime. We provide further disussion of these halos in Setion 3.6.

It is also worth noting that the ritial solution best orresponds to a boson

star in the \ground state", i.e. a solution without any nodes in the distribution

of the �elds �

1

or �

2

. Boson stars in exited states (i.e., having nodes in �

1

and

�

2

) have mass distributions whih di�er signi�antly from the ritial solutions we

obtain [9℄.

We wish to explain these simulation results in terms of the quasi-normal

modes of boson stars. Previous work in ritial phenomena [15, 24, 30, 38, 45, 46,

64, 74℄ leads us to surmise that there is a single unstable mode present in the system

whih is exited when the boson star moves into the ritial regime. The osillatory

behavior during the ritial regime may be explainable in terms of the superposition

of a stable osillatory mode with the unstable mode. In the next setion, we attempt

to on�rm these hypotheses by means of perturbation theory.

3.4 Boson Star Stability Study via Linear Perturbation

Theory

We follow the work of Gleiser and Watkins [43℄. For the perturbation alulations,

we �nd it helpful to de�ne the following metri funtions:

e

�(t;r)

� �

2

e

�(t;r)

� a

2
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Figure 3.6: Comparison of highly unstable (low-mass) ritial solution and boson

star. Squares show a ritial solution resulting from a boson star having �

0

(0) =

0:26 �

p

4�: (The data has been redued for graphing purposes; the atual spatial

resolution in the simulation is four times �ner than that shown in the �gure.) The

solid line shows a \best �t" (unstable) boson star we onstruted by �nding the time

average of j�(t; 0)j in the ritial solution and using this as the value for �

0

(0) in

the ODE integration routine whih solves for the equilibrium (boson star) solutions.

We see that there is a small halo near the outer edge of the solution (r = 8). The

halo has the same relative magnitude when viewed in terms of the partile number

distribution �N=�r. We disuss the halo phenomena further in Setion 3.6.
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and to rewrite the omplex �eld �(t; r) as

�(t; r) = [ 

1

(t; r) + i 

2

(t; r)℄e

�i!t

; (3.24)

where  

1

and  

2

are real. (Note that this is a di�erent deomposition of the �eld �

than (3.7), the one used in the previous setions.)

In these variables, the equilibrium quantities are

�(t; r) = �

0

(r) (3.25)

�(t; r) = �

0

(r) (3.26)

 

1

(t; r) = �

0

(r) (3.27)

 

2

(t; r) = 0: (3.28)

For the perturbation, we expand about the equilibrium quantities by �rst

introduing four perturbation �elds|Æ�(t; r), Æ�(t; r), Æ 

1

(t; r) and Æ 

2

(t; r)|and

then setting:

�(t; r) = �

0

(r) + Æ�(t; r) (3.29)

�(t; r) = �

0

(r) + Æ�(t; r) (3.30)

 

1

(t; r) = �

0

(r)(1 + Æ 

1

(t; r)) (3.31)

 

2

(t; r) = �

0

(r)Æ 

2

(t; r): (3.32)

These expressions are substituted into the relevant evolution and onstraint

equations (details in Appendix C), after whih the resulting system an be redued

to the following system of two oupled seond-order ordinary di�erential equations

for Æ�

1

and Æ�:

Æ 

00

1

= �

�

2

r

+

�

0

0

� �

0

0

2

�

Æ 

0

1

�

Æ�

0

r�

2

0

+ e

�

0

��

0

Æ

�

 

1

�

"

�

0

0

�

0

�

�

0

0

� �

0

0

2

+

1

r

�

+

�

�

0

0

�

0

�

2

+

1� r�

0

0

r

2

�

2

0

+ e

�

0

��

0

!

2

� e

�

0

#

Æ�
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+ 2e

�

0

"

1 + e

��

0

!

2

+ e

��

0

�

�

0

0

�

0

�

2

+ r�

0

�

0

0

#

Æ 

1

(3.33)

Æ�

00

= �

3

2

(�

0

0

� �

0

0

)Æ�

0

+

"

4�

02

0

+ �

00

0

+

2

r

2

�

(�

0

0

� �

0

0

)

2

2

�

2�

0

0

+ �

0

0

r

#

Æ�+ e

�

0

��

0

Æ

�

�

� 4(2�

0

�

0

0

� re

�

0

�

2

0

)Æ 

0

1

� 4

�

2�

02

0

� re

�

0

�

2

0

�

2

�

0

0

�

0

+

2�

0

0

+ �

0

0

2

��

Æ 

1

: (3.34)

To perform the stability analysis (normal-mode analysis), we assume a har-

moni time dependene, i.e.,

Æ 

1

(t; r) = Æ 

1

(r) e

i�t

Æ�(t; r) = Æ�(r) e

i�t

:

Note that (3.33) and (3.34) ontain only seond derivatives with respet to time,

and beause there are good reasons to assume �

2

is purely real [61, 43℄, we only need

to determine whether �

2

is positive or negative to determine stability or instability,

respetively.

Using the method desribed in Appendix C, we �nd the distribution for the

squared frequeny �

2

0

of the fundamental mode, with respet to �

0

, whih is shown

in Figure 3.7.

Superposed with the fundamental mode, we may have other modes at higher

frequenies. Figure 3.8 shows the relation between �rst harmoni frequenies and

�

0

(0).

3.5 Comparison of Perturbation Analysis and Simula-

tion Data

We wish to ompare the results of our perturbation theory alulation with the

osillations of stable boson stars. Two di�erenes exist between the onventions used

in the perturbation theory alulation and those used in the boson star simulation
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Figure 3.7: Mode frequenies of boson stars: fundamental mode. This plot shows

a graph of �

2

0

, the squared frequeny of the fundamental mode, versus the value of

�

0

at the origin. Note that, as the inset shows, �

2

0

rosses zero when �

0

(0) ' 0:27,

whih orresponds to a boson star with the maximum possible mass. (The irles

show atual values obtained, and the solid line simply onnets these points.)
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Figure 3.8: Mode frequenies of boson stars: �rst harmoni mode. This plot shows

a graph of �

2

1

, the squared frequeny of the �rst harmoni mode, versus the value of

�

0

at the origin. Note that, as the inset shows, �

2

1

rosses zero when �

0

(0) ' 1:15,

whih orresponds to the �rst loal minimum on the unstable branh of the mass

vs. radius urve (see Figure 3.5). (The irles show atual values obtained, and the

solid line simply onnets these points.)
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data. The �rst di�erene is in the hoie of the time oordinate. In the perturbation

theory ode, we hoose a lapse of unity at the origin, whereas in the simulations we

set the lapse to unity at spatial in�nity. Thus we have the following mapping from

the perturbation theory alulations to the simulations:

�

2

�

�

�

Perturbative

!

�

2

�

2

�

�

�

Simulation

The other signi�ant di�erene is in the way the omplex �eld �(t; r) is

deomposed into onstituent real �elds. Thus we annot diretly ompare �

1

and

 

1

, for example. We an, however, ompare the modulus j�j of the �eld. For the

simulation data, the perturbation in j�j an be taken diretly from (�

2

1

+�

2

2

)

1=2

. For

the data obtained from perturbation theory, the perturbation in j�j will be, to �rst

order, �

0

Æ 

1

.

Before proeeding to the omparisons per se, we wish to point out that

determining the unstable mode via numerial simulation of the full nonlinear system

was very easy to do in omparison to the linear perturbation theory alulations.

3.5.1 Modes of Stable Boson Stars

We provide this subsetion as a \warm-up" for the omparison of ritial solutions

and unstable boson stars. Consider the simulation data for whih initially �

0

(0) =

0:05�

p

4�. The boson star osillates about a point of stable equilibrium. We take

data from this equilibrium state and subtrat it from the data at all times of the

simulation, in order to extrat the osillatory mode. In the simulation, we �nd a

period (in �(0)) of about T = (968:75 � 109:38; t)=4 = 214:8425. The osillation

frequeny is given by � = 2�=T , from whih we �nd �

2

= 8:553017 � 10

�4

. The

average value of 1=�(t; 0)

2

during this interval is h1=�

2

i = 1:6281. Thus the squared

osillation frequeny to ompare with the perturbation theory results is �

2

=�

2

=

0:00139:
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We hoose simulation data at a loal maximum in the osillation yle to

ompare with the perturbation theory results. At this time, the amplitude of the

osillation is �j�(t; 0)j = 5:592091 � 10

�4

: From the perturbation theory ode, we

�nd the proper solution is obtained using �

2

' 0:00140 and Æ�

00

(0) ' 2:5 � 10

�4

.

Thus the square of the osillation frequeny obtained from the simulation is in

agreement with the value of ' 0:0014 obtained from the simulations.

We an graph the funtions obtained and �nd good agreement between the

simulation data and perturbation theory, as shown in Figures 3.9 and 3.10.

3.5.2 Unstable modes

To measure the unstable mode, we again perform a series of simulations in whih we

allow a gaussian pulse from an addition real, massless Klein-Gordon �eld to impinge

on a stable boson star.

By tuning the amplitude of this pulse (holding onstant the width of the pulse

and its initial distane from the boson star), we an generate a family of slightly

di�erent near-ritial solutions depending on the amplitude of the initial gaussian

pulse, and an tune down the initial magnitude of the unstable mode. By subtrating

these slightly di�erent near-ritial solutions, we obtain a diret measurement of the

unstable mode.

Considering a spei� example, we start with a stable boson star whih has

an initial �eld value at the origin of �

0

(0) = 0:04�

p

4�. By driving it with a gaussian

pulse tuned to mahine preision, we an ause this stable star to beome a ritial

solution whih persists for very long times, osillating about a loal equilibrium.

The average value of j�(t; 0)j is hj�(t; 0)ji ' 0:463. We measure the unstable mode

by subtrating data of a run whih ontained a gaussian pulse with an amplitude

that di�ered by 10

�14

from that of the pulse tuned to mahine preision. We an

then measure the growth fator of the unstable mode by taking the L

2

norm of this
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Figure 3.9: Fundamental mode of stable boson star. The dashed (red) line shows

�

0

Æ 

1

from the perturbation theory alulations. To obtain the solid (green) line,

we took the simulation data and subtrated the Klein-Gordon �eld at one instant of

time from the data at another instant. We see that, to the eye, the two graphs are

indistinguishable. When we begin the disussion of unstable modes, we will show

the di�erenes between perturbation theory and simulation results.
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Figure 3.10: Fundamental mode of stable boson star. Perturbation in metri fun-

tion a. The dashed (red) line shows the perturbation to the metri funtion a as

found via perturbation theory alulations. To obtain the solid (green) line, we took

the simulation data and subtrated the metri funtion a at one instant of time from

the data at another instant.
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di�erene at various times, taking the logarithm, and �tting a straight line to it.

From this, we obtain � ' 0:109 i, or �

2

' �0:0118. Beause of the di�erenes in time

oordinate between the simulations and perturbation theory alulations, we need to

ompute �

2

=�

2

in order to ompare with the perturbation alulations. We �nd the

average value of 1=�(t; 0)

2

for the times listed above to be h1=�(t; 0)

2

i ' 3:80, and

thus we �nd �

2

=�

2

' �0:0450: We hoose to ompare these perturbation theory

results with data from a time in the simulation for whih the di�erene in �eld

values (for the two evolutions tuned slightly di�erently) is �j�(t; 0)j ' 8:4� 10

�13

.

We use this value in the perturbation theory solver and arrive at �

2

' �0:045, in

good agreement with the value from the simulation. In Figures 3.11 and 3.12, we

ompare the graphs of the solutions for the unstable mode. In Figure 3.13 we show

a omparison of the squared frequeny values obtained from the linear perturbative

analysis and those as measured in our simulations.

3.5.3 Osillatory modes

We an also look at the osillatory mode during the ritial regime. We study

the behavior of suh a mode using the same tehnique we used to examine the

fundamental mode of the unstable boson star: we subtrat the data at one instant

of time from the data at all other instants. Again, as a spei� example, we use

the same initial boson star as that used in the previous setion. During the ritial

portion of the evolution, we notie an osillation period of about T ' 38:4, and thus

we obtain � = 2�=T ' 0:0261: During this period, the average value of 1=�

2

(t; 0) is

about 3:80, and thus we �nd �

2

=�

2

' 0:102: We take data from a moment in the

middle of the osillation period, and subtrat it from the data at other times. We

an then ompare the perturbation theory results with simulation data at a loal

peak of the osillation. For the loal peak we hose at time t = t

p

, the di�erene

in the modulus of the �eld was �j�

(

t

p

; 0)j ' 0:0197. Inserting this value into the
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Figure 3.11: Fundamental mode of unstable boson star. (a) The solid line shows

�

0

Æ 

1

from the perturbation theory alulations. The squares shows the di�erene

between j�j for two simulations for whih the ritial parameter p di�ers by 10

�14

.

(The data has been redued for graphing purposes; the atual spatial resolution in

the simulation is four times �ner than what is shown in the �gure.) Di�erenes

between the simulation data and perturbation theory results are below 1:1� 10

�15

.

If a line were drawn onneting the squares, it would be indistinguishable, to the

eye, from the perturbation theory line. Thus we provide a seond graph (b) showing

the di�erene of these results, where the sale is relative to the maximum value of

Æj�j.
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Figure 3.12: Fundamental mode of unstable boson star. (a) The solid line shows

the perturbation to the metri funtion a, as found from the perturbation theory

alulations. The squares shows the di�erene between the metri funtion a for two

simulations for whih the ritial parameter p di�ers by 10

�14

. (In the simulations,

the spatial resolution was four times that shown in the �gure.) (b) A plot of the

di�erene between the mode obtained from the simulation and the mode obtained

via perturbation theory, where the sale is relative to the maximum value of Æa.

57



Figure 3.13: Comparison of squared frequenies/Lyapunov exponents for unstable

modes. The irles show a subset of the perturbation theory data as displayed

in Figure 3.7. The squares show the measurements obtained from our simulations.

(The solid line simply onnets the irles.) We note that the agreement between the

two sets is good even for the more unstable, low-mass solutions. We also point out

that the measurements of our simulations were performed along r = 0, i.e., in the

interior of the halo found in the low-mass solutions, whih seems to strengthen the

remarks at the end of Setion 3.3, namely that, aside from the halo at the exterior

of the ritial solution, the ritial solutions (of all masses) seem to orrespond to

unstable boson stars.
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perturbation theory ode, we �nd �

2

' 0:102 for this on�guration. Thus we again

�nd exellent agreement between the squared osillation frequenies omputed in

perturbation theory and via simulation.

In Figures 3.14 and 3.15, we ompare the funtions obtained from the per-

turbation theory alulation with those from the simulation. We note that the

agreement for the metri funtions is very good for all radii, but the agreement in

the �elds begins to deline beyond r = 5. Why do the graphs of j�j not agree well

for the �rst harmoni? This ould be a onsequene of our simplisti method of

extrating this mode. While our method of simply subtrating di�erent frames has

worked well for our test ases of osillations of stable boson stars, the �rst harmoni

of the unstable star has a higher frequeny and thus our graph ould be subjet

to sampling e�ets. A better method would be to perform a Fourier transform in

time for eah grid point, and onstrut the higher harmonis in the �eld aordingly.

Given the strength of the agreement in the graphs of the metri, our analysis does

seem to indiate that the osillations observed for this data in fat orrespond to

the �rst harmoni quasinormal mode of a boson star, however the analysis of the

matter �eld needs further attention.

Finally, we must remark that we have been unable, using the fundamental

and �rst harmoni modes of an unstable boson star, to onstrut a solution possess-

ing a halo similar to that shown in Figure 3.6. We do not expet higher modes to

be of any use here, beause the halo is observed to osillate with the same (single)

frequeny as the rest of the star. Sine, as we desribed at the end of Setion 3.3,

the halo seems to be radiated away over time, we might not expet it to be desribed

by the quasinormal modes (whih onserve partile number) we have onstruted.
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Figure 3.14: First harmoni of an unstable boson star. (a) The solid line shows

�

0

Æ 

1

from the perturbation theory alulations. To obtain the squares, we took

the simulation data and subtrated the Klein-Gordon �eld at one instant of time

from the data at another instant. (The data in the simulations had a spatial res-

olution four times �ner than what is shown in the �gure.) (b) The squares show

the di�erene between mode obtained from simulation and the mode obtained via

perturbation theory, saled relative to the maximum value of Æj�j. As we desribe

in the text, the lak of agreement beyond r ' 6 may be an artifat of simplisti data

analysis. The next �gure shows that the metri quantities, whih depend diretly

on the matter distribution (and thus on j�j), show a favorable omparison between

the simulations and perturbation theory.
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Figure 3.15: First harmoni of an unstable boson star. (a) The solid line shows

the perturbation to a as found from perturbative alulations. To plot the squares,

we took the simulation data and subtrated the metri funtion a at one instant

of time from the data at another instant. (The spatial resolution in the simulation

was four times �ner than what is shown in the �gure.) (b) The squares show the

di�erene between the simulation data and the results of linear perturbation theory,

saled relative to the maximum value of Æa. The lose �t between these results

indiates that the osillations observed in the ritial solutions orrespond to stable

osillatory modes in an unstable boson star.
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3.6 Halos

We have strong evidene that the ritial solutions orrespond to unstable boson

stars, but the prinipal point of disagreement is the existene of a \halo" of massive

�eld whih resides in the \tail" of the solution. It is our ontention that this halo is

not part of the true ritial solution, but rather, is an artifat of the ollision with

the massless �eld.

In partiular, the halo seems to be a remnant of the original (stable) boson

star whih is not indued to ollapse with the rest of the star to form the true

ritial solution. We �nd that suh a halo is observable in nearly all but the most

massive (least unstable) ritial solutions we have onsidered, and that its size tends

to inrease as less massive (more unstable) solutions are generated. The fat that

the halo thus dereases as we approah the turning point only makes sense|a stable

boson star very lose to the turning point needs very little in the way of a pertur-

bation from the massless �eld to be "popped" over to the unstable branh, and the

�nal, unstable on�guration, will, of ourse, be very lose to the initial state.

Additionally, we note that in all ases we have examined, the �eld omprising

the halo osillates with nearly the same (single) frequeny as the rest of the solution.

This indiates that the halo is not explainable in terms of additional higher-frequeny

modes.

As one might expet, the properties of the halo are not universal, i.e. they

are quite dependent on the type of initial data used. In ontrast, the ritial solu-

tion interior to the halo is largely independent of the form of the initial data. To

demonstrate this, we use two families of initial data, given by a \gaussian" of Family

I in Table 3.1 and a \kink" of Family I I. A series of snapshots from one suh pair

of evolutions is shown in Figure 3.16. We �nd di�erent amounts of mass transferred

from the massless to the massive �eld for the kink and gaussian data, as shown in

Figure 3.17, yet the entral values of the �eld osillate about nearly the same value
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at nearly the same frequeny. Both alulations start with idential boson stars with

j�(0; 0)j = 0:04�

p

4�. In the ritial regimes, this beomes hj�(t; 0)ji = 0:130�

p

4�

for the solution obtained from the gaussian data, and hj�(t; 0)ji = 0:135 �

p

4� for

the kink data. As already noted, the osillation periods are also quite similar, dif-

fering by about 3%, and the masses interior to the halo are also quite omparable.

In partiular, it seems quite remarkable that the di�erenes in mass interior to the

halo for the two families are muh smaller than the mass transferred from the real

�eld in either ase.

If we onsider the inner edge of the halo to be where �j�j=�r = 0 at some

�nite radius (e.g., r ' 5 in Figure 3.6), and look at the data between r = 0 and the

inner edge of the halo, we �nd good agreement between this data and the pro�le of

a boson star. This an be seen in both Figures 3.6 and 3.18.

We suspet that the halo is radiated over time (via salar radiation, or \grav-

itational ooling" [91℄) for all ritial solutions. We �nd, however, that the time sale

for radiation of the halo is omparable to the time sale for dispersal or blak hole

formation for eah (nearly) ritial solution we onsider. Thus, while we see trends

whih indiate that the halo is indeed radiating, we are not able to demonstrate this

onlusively for a variety of senarios. With higher numerial preision, one might

be able to more �nely tune out the unstable mode, allowing more time to observe

the behavior of the halo before dispersal or blak hole formation our.

3.7 Conlusions

We have shown that it is possible to indue gravitational ollapse and, in partiular,

Type I ritial phenomena in spherially-symmetri boson stars in the ground state,

by means of \perturbations" resulting from gravitational interation with an in-

going pulse from a massless real salar �eld. Through this interation, energy is

transferred from the real to the omplex �eld, and omplex �eld is \driven" and
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Figure 3.16: Evolution of r

2

dM

C

=dr for for two di�erent sets of initial data. Both

sets ontain the same initial boson star, but the massless �eld �

3

for one set is

given by a \gaussian" of Family I (solid line) with r

0

= 30, and � = 8 whereas for

the other set �

3

is given by a \kink" of Family II (dashed line) with r

0

= 35 and

� = 3. The variable A is varied (independently for eah family) as the parameter

p to obtain the ritial solution. (Note that after t ' 60, the massless �eld has

ompletely left the domain shown in the �gure.) We have multiplied dM

C

=dr by r

2

to highlight the dynamis of the halo; thus the main body of the solution appears

to derease in size as it moves to lower values of r. The kink data produes a larger

and muh more dynamial halo, but interior to the halo, the two ritial solutions

math losely | and also math the pro�le of an unstable boson star. Thus, the

portion of the solution whih is \universal" orresponds to an unstable boson star.

64



Figure 3.17: M

C

vs. time for the two evolutions shown in Figure 3.16. Mass

transfer from the real to the omplex �eld ours from t ' 30 to t ' 60, i.e. while

the supports of the �elds overlap. There is more mass transferred using the kink

data, and yet the mass falls o� rapidly. The mass of the kink data aquires a value

very lose to the mass of the gaussian data, whih is itself dereasing slowly with

time. We see that, beyond t ' 250, the di�erene in mass between the two solutions

is very small ompared with the amount of mass transferred from the real �eld.
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Figure 3.18: Mass vs. hj�(t; 0)ji, the time average of the entral value of the �eld

for equilibrium on�gurations of boson stars (solid line), initial data (triangles) and

ritial solutions (open and �lled squares). Arrows are given to help math initial

data with the orresponding ritial solution. Points on the solid line to the left of

the maximum massM

max

' 0:633M

2

P l

=m orrespond to stable boson stars, whereas

those to the right of the maximum orrespond to unstable stars. The data is the

same as that used for Figure 3.5, with data from one further evolution added at the

bottom of the mass range. The open squares show the time average of the mass and

j�(t; 0)j of some ritial solutions, and the �lled squares show the same quantities

evaluated between r = 0 and the inner edge of the halo, de�ned to be the point

where �j�j=�r = 0 for �nite r. The mass of the ritial solution is in general greater

than the mass of the initial data, however the mass inside the halo of the ritial

solution is less than the mass of the initial data.
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\squeezed" to form a ritial solution. The massless �eld is not diretly involved in

the ritial behavior observed in the omplex massive �eld; the ritial solution itself

appears to orrespond to a boson star, whih, at any �nite distane from ritiality

in parameter spae, exhibits a superposition of stable and unstable modes.

Spei�ally, for initial data onsisting of a boson star with nearly the maxi-

mum possible mass of M

max

' 0:633M

2

pl

=m, the resulting ritial solution osillates

about a state whih has all the features of the orresponding unstable boson star in

the ground state, having the same mass as the initial star. This result is reminisent

of the study by Brady et al. [15℄, who found that the Type I ritial solutions for

a real massive salar �eld orresponded to the osillating soliton stars of Seidel and

Suen [89℄. For boson stars with a mass somewhat less than M

max

, e.g., 0:9M

max

or less, however, we �nd less than omplete agreement between the ritial solution

and an unstable boson star of omparable mass. This is evidened by the presene

of an additional spherial shell or \halo" of matter in the ritial solution, loated in

what would be the tail of the orresponding boson star. Interior to this halo, we �nd

that the ritial solution ompares favorably with the pro�le of an unstable boson

star. Additionally, we have shown that the halo details depend on the spei�s of

the perturbing massless �eld, and we onjeture that, in the in�nite time limit, the

halo would be radiated away.

In order to extend the omparison between the ritial solutions and boson

stars, we have veri�ed and applied the linear perturbation analysis presented by

Gleiser and Watkins [43℄, extending their work by providing an algorithm to obtain

modes with nonzero frequeny. We have used this algorithm to give quantitative

distributions of mode frequeny vs. entral density of the boson star for the �rst two

modes, as well as to solve for the modes to ompare with our simulation results. We

have found that the unstable mode in the ritial solutions have the same growth rate

as the unstable mode of boson stars, and that the mode shapes also ompare quite
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favorably. We noted that the unstable mode of these boson stars was determined

muh more easily by solving the full nonlinear set of evolution equations, rather than

via linear perturbation theory. The osillations observed in the ritial solution also

indiated agreement with �rst harmoni mode obtained via perturbation theory,

however the osillatory mode in j�j showed poor agreement at large radii, and awaits

more areful analysis.

Future work may inlude simulations of the ritial solutions of low mass

using higher numerial preision to further tune away the initial amplitude of the

unstable mode, thus allowing more time to observe the the small halo (i.e., whether

it is in fat being radiated away). We would also hope to obtain better agreement

between simulation and perturbation theory for the �rst harmoni mode of the

�eld j�j, perhaps using a more sophistiated method of extrating modes from the

simulation. Another diretion worthy of note would be to begin the simulation with

a pulse of the omplex �eld (instead of spei�ally a boson star) tune the height

of the pulse to �nd the ritial solutions via interpolation, and then ompare the

resulting ritial solutions with our results obtained by perturbing boson stars.

Finally, we �nd it worthwhile to investigate similar senarios for neutron

stars. While there have been studies regarding the explosion of neutron stars near

the minimum mass (e.g., [33℄, [96℄), we would like to see whether neutron stars of

non-minimal mass an be driven to explode via dispersal from a ritial solution.

This may take the form of a neutron star approahing the onset of instability via

slow aretion, or by being driven aross the stability graph via violent heating from

some other matter soure, in a manner similar to the perturbations of boson stars

we have onsidered in this hapter.
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Chapter 4

Multi-Salar Stars

A lass of general relativisti solitons is onsidered in whih multiple real salar

�elds are expressed as Fourier osine series with arbitrary temporal phase di�erenes

between the �elds. For the speial ase of two salar �elds, a one-parameter family

of solutions is found spanning from osillating soliton stars (relative phase Æ = 0)

to boson stars (Æ = ��=2). Numerial evolution of these solutions on�rms their

stability.

4.1 Introdution

In 1991, Seidel and Suen [90℄ showed the existene of non-topologial solitons for a

matter model without an expliit onserved Noether urrent: a minimally-oupled

real-valued salar �eld. Calling these \osillating soliton stars", they onstruted

these solutions for the ase of spherial symmetry by expanding the �eld and metri

variables as Fourier osine series, with expansion oeÆients depending only on

radial position. They then demonstrated, via diret numerial evolution, that the

solutions obtained are stable and indeed persist with the required periodiity. In

this hapter, we present an extension of Seidel and Suen's work on osillating soliton
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stars, in whih multiple salar �elds are onsidered.

The matter model we are interested in is that of n Klein-Gordon �elds with-

out self-interation, minimally oupled to general relativity. Suh a model has a

Lagrangian density given by

L = R

p

�g �
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2
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We work in spherial symmetry, using the \polar/areal" oordinate system

ds
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The omplete evolution of the �eld and metri is given in terms of the Klein-Gordon

equation and two onstraints from Einstein's equations. The equations an be writ-

ten as:
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where an overdot is used to denote �=�t and a prime to denote �=�r.
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We start by onsidering only one salar �eld, i.e. n = 1. We note that the

\sliing ondition" (4.4) and the \Hamiltonian onstraint" (4.5) are unhanged if

we deompose � into two idential �elds (n = 2), �

1

and �

2

= �

1

, suh that

� =

1

p

2

(�

1

+ �

2

) : (4.6)

Also, the Klein-Gordon equation (4.3) is unhanged if we multiply � by a onstant.

(Thus we an absorb the fators of 4�G in (4.4) and (4.5) by letting

p

4�G�! �.)

Sine a soliton solution orresponding to (4.3)-(4.5) is the osillating soliton

star, we see that a trivial multi-salar soliton solution an be obtained by onstrut-

ing an osillating soliton star with a single �eld, as desribed in Seidel and Suen's

paper [90℄ and then performing the deomposition (4.6).

On the other hand, if we wish to model a boson star, then we have one massive

omplex salar �eld

~

�, for whih the real and imaginary parts behave like two real-

valued salar �elds:

~

� = �

1

+ i�

2

. The boson star ansatz is

~

� =

^

�(r) exp(�i!t);

where

^

�(r) is real. This implies

�

1

=

^

�(r) os(!t)

�

2

=

^

�(r) os(!t+ Æ); (4.7)

where Æ = ��=2.

Comparing the soliton star and the boson star, we �nd that both solutions

an be obtained by using two real-valued salar �elds. For the soliton star, the �elds

will have equivalent radial and temporal dependene; whereas for the boson star,

the �elds have equivalent radial dependene, and the temporal dependene is the

same to within a phase.

4.2 Phase-Shifted Boson Stars

The work desribed in this hapter began in the midst of our numerial evolutions

of boson stars. The question arose, \What happens if we solve for the boson star
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initial data, then `manually' hange the phase relationship of the two �elds, keeping

their radial dependene unhanged, and then, �nally, re-solve for the metri vari-

ables using the new matter on�guration?" For future referene, we term suh a

on�guration a \phase-shifted boson star." This was in part motivated by a de-

sire to study osillating soliton stars, and by our initial diÆulty in onstruting

the proper initial data. Taking the boson star initial data and manually removing

the phase shift between the two �elds resulted in what might be termed a \poor

man's soliton star." Suh a system demonstrates a stable, quasi-periodi behavior

as shown in Figure 4.1.

We then onsidered solutions in whih we again took the boson star initial

data

^

�(r) and distributed it to �

1

and �

2

using some di�erent value of Æ, suh as

Æ = �=6. The evolution for suh a system an be seen in Figure 4.2.

For eah of the many values of Æ we tried, we found an apparently stable

solution whih osillated in some nearly periodi manner for very long times. These

results led Choptuik to onjeture [28℄ that there may exist a ontinuous family of

periodi soliton-like solutions, parameterized by the phase Æ.

While our \phase-shifted boson stars" already onstitute suh a family, we

wished to onstrut periodi multi-salar solutions diretly via a periodi ansatz of

the form used by Seidel and Suen for their osillating soliton stars.

4.3 Construting Periodi Solutions

The method used for onstruting the solutions is a natural extension of that used

in [90℄. We expand the �elds and metri variables in the following manner:

�

i

(t; r) =

1

X

j=1

�

i;2j�1

(r) os[(2j � 1)!t+ Æ

i

℄ ; (4.8)
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Figure 4.1: Central value of the �elds �

1

(t; 0) = �

2

(t; 0) vs. time t, for the \poor

man's soliton star" obtained via solving for boson star initial data and altering �

2

by setting �

2

(0; r) = �

1

(0; r). One an see (e.g. near t = 800) that the solution is

not ompletely periodi, but it is nevertheless long-lived. Stable evolutions of this

system have been obtained for t > 20000.
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Figure 4.2: Central value of the �elds �

1

(t; 0) = �

2

(t; 0) vs. time t, for the phase-

shifted boson star with Æ = �=6. Note the trade-o� of energy between the two

�elds.
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�

2

(t; r) = 1 + �

1;0

(r)

+

n

X

i=2

1

X

j=1

�

i;2j

(r) os[2j!t+ 2Æ

i

℄ ; (4.9)

a

2

(t; r) = 1 + a

1;0

(r)

+

n

X

i=2

1

X

j=1

a

i;2j

(r) os[2j!t + 2Æ

i

℄ : (4.10)

We insert the above expressions into Eqs. (4.3)-(4.5), expanding the resulting

equations in terms of sines and osines, and obtain a set of ordinary di�erential

equations (ODEs) by requiring that the oeÆients of a given Fourier mode sum

to zero. Regularity at r = 0 requires (�=�r)�

i;j

(0) = 0 as well as loal atness,

a

i;j

(0) = 0. Asymptoti atness requires a

i;j

(r) and �

i;j

(r) go to zero suÆiently

rapidly as r ! 1. Sine the �

i;j

(r) are part of the lapse, and thus represents

freedom in hoosing a oordinate system, we require only that they asymptotially

approah onstant values as r ! 1. The equations (4.3)-(4.5) along with the

above boundary onditions onstitute an eigenvalue or \shooting" problem. The

eigenvalues we shoot for are �

i;j

(0), given �

i;j

(0). (We hoose ! = 1 beause ! an

be absorbed into the hoie of the time oordinate, t! t=!, �! �!.) This would

ordinarily onstitute a multidimensional parameter spae searh for the eigenvalues

�

i;j

(0), however oordinate freedom allows us to redue the parameter spae to one

dimension by hoosing �

i�2;j

(0) = 0. This hoie has the additional bene�t of

allowing for a simple boundary ondition on the derivatives �

00

i;j

at r = 0, whih we

need in order to do the integration: Our hoie �

i�2;j

(0) = 0 means that the �

00

i;j

(0)

ompletely deouple from one another in Eq. (4.3) in the limit r! 0, and we obtain

the equation

�

00

i;j

(0) =

 

1

3

�

i;j

�

1;0

1 + �

1;0

!

�

�

�

�

�

r=0

:
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In pratie we must trunate the sums in (4.8)-(4.10) at some �nite maxi-

mum value of j, denoted by j

max

. The resulting system of equations is in general

underdetermined, but we solve only the 3nj

max

+ 4 equations orresponding to the

lowest modes, treating the other modes as higher order orretions whih we neglet.

We now return to the previous example of boson stars and osillating soliton

stars, both of whih we an obtain by setting n = 2 in the expansions (4.8)-(4.10),

and setting m

i

= m and all �

i;j

(r) for a given j equal to eah other, as in �

i;j

(r) =

^

�

j

(r). This has the e�et of making all �

i;j

(r) equal to the same �̂

j

(r) for a given j,

and similarly a

i;j

(r) = â

j

(r): We also set Æ

1

= 0 and de�ne Æ � Æ

2

. Both the soliton

star of [90℄ and the boson star require

^

�

j�3

(0) = 0. This means that the only free

parameters are

^

�

1

(0) and Æ, leaving �

1;0

as an eigenvalue for whih to shoot. Thus

by onstrution, for a given

^

�

1

(0), one will obtain a soliton star if one sets Æ = 0,

and a boson star for Æ = ��=2.

One wonders how well the trunated series expansion mathes the ideal so-

lution one would obtain given an in�nite number of modes. Clearly one would hope

that the series would onverge rapidly enough to justify taking only a few terms.

Figure 4.3 demonstrates the onvergene of the series (4.10) for di�erent values of

Æ, given j

max

= 2.

The relation between between total mass and radius of the star is shown

in Figure 4.4, for various values of Æ. The inset shows the relation between the

maximum mass of the star and the phase angle Æ.

We see that there exist great similarities between boson stars and osillating

soliton stars, and that both are members of a larger family of two-salar solutions.

A question arises, however, regarding the stability of the general two-salar stars:

Do these on�gurations persist and maintain their periodiity in the fae of pertur-

bations? To answer this question, we opt for a numerial solution of Eqs.(4.3)-(4.5).
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Figure 4.3: Convergene of the multi-salar star series for the metri oeÆient

funtions g

i

, for four values of the phase shift Æ. The solid (red) line shows g

0

,

the short dashed (blue) line shows g

2

, and the long-dashed (green) line shows g

4

.

Thus the expansion seems to onverge rapidly. For a boson star (Æ = �=2), there

is only one osillatory mode. For this ase, we �nd �

3

(r) ! 0 as Æ ! �=2, but

we do not �nd the higher-order oeÆient funtions, e.g. g

2

(r), g

4

(r), vanishing

as Æ ! �=2. The total ontributions to the metri funtions a

2

and �

2

given by

(4.10) and (4.9) ontain the oeÆient funtions multiplied by quantities whih go

as os(!t) + os(!t+ 2Æ), whih do go to zero as Æ ! �=2.
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Figure 4.4: Comparison of mass vs. radius for a family of two-salar stars parame-

terized by the temporal phase shift Æ. We see that boson stars (Æ = �=2) are similar

to osillating soliton stars (Æ = 0) in terms of mass and radius.
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4.4 Numerial Evolution of the Solutions

We use the same numerial ode as used for the boson star study of Chapter 3.

Having obtained the initial data by integrating the ODEs desribed above, we de�ne

new variables

�

i

� �

0

i

; �

i

�

a

�

_

�

i

(4.11)

In terms of these new variables, the relevant evolution equations are

_

�

i

=

�

�

a

�

i

�

0

(4.12)

_

�

i

=

1

r

2

 

r

2

�

a

�

i

!

0

�m

2

i

�a�

i

(4.13)

and we solve for the �elds �

i

and the metri variables by integrating along eah

spatial hypersurfae the equations �

0

i

= �

i

and

a

0

= a

1� a

2

2r

+

1

2

ra

n

X

i=1

�

�

i

2

+�

i

2

+ a

2

m

2

i

�

2

i

�

(4.14)

�

0

= �

 

a

2

� 1

r

+

a

0

a

� ra

2

n

X

i=1

m

2

i

�

2

i

!

: (4.15)

The boundary onditions at r = 0 are the same as those stated previously

with the exeption that we hoose the lapse � suh that the oordinate t measures

proper time as r ! 1. As in Chapter 3, we use as an outer boundary ondition

the Sommerfeld ondition for a massless �eld. We ran our simulations with di�erent

values of omputational domain size r

max

, trying to test for any periodiity or other

e�ets that might be a funtion of the outer boundary, but we found the results

to be essentially independent of r

max

, even for times whih are large ompared to

the time for information to ross the grid (e.g. 0 � t � 2000 with r

max

� 50). We

attribute this to the fat that there is very little salar radiation from these ompat

objets.
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4.5 Simulation of Multi-Salar Stars

When we evolve the initial data, we �nd that the resulting solutions deviate sharply

from the periodi ansatz. This is shown in Figure 4.5. We are still investigating

the ause of this disagreement. We note, however, that the numerial solutions do

follow quasi-periodi evolutions over long time sales, further promoting the idea

that quasi-periodi two-salar solutions may be ommon.

4.6 Conlusion

We have demonstrated the existene of at least one family of multi-salar solutions

we all \phase-shifted boson stars" whih are obtained by solving the ODEs assoi-

ated with boson stars and then altering the phase between the real and imaginary

parts of the �eld. These solutions may not be stritly periodi or stritly stable, but

they are very long-lived and demonstrate periodiity over these long time sales.

Diret onstrution of stritly periodi solutions via a Fourier osine series similar

to that of Seidel and Suen [90℄ yields series whih onverge rapidly, and for a speial

sublass produe a one-parameter family in the phase shift Æ, spanning osillating

soliton stars at Æ = 0 to boson stars at Æ = �=2. For other values of Æ, we do

not �nd agreement between numerial evolution of the initial data and the periodi

ansatz, rather we �nd a di�erent quasi-periodi, long-lived solution. The ause of

this alternate evolution is still under investigation.
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Figure 4.5: Results from evolution of a two-salar star for initial data with �

i

(0; 0) =

0:04, Æ = �=4, showing the maximum value of a on eah spaelike hypersurfae

parameterized by t. Dashed lines show the \ideal" solution obtained by evaluating

(4.3)-(4.5) as a funtion of t. The solid lines show the results of simulation on the

domain 0 � r

max

� 75. We see that the simulation data di�ers markedly from the

periodi ansatz solution.
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Chapter 5

Toward Automati Adaptive Mesh

Re�nement (AMR)

5.1 AMR In General

One of the most ommon tehniques for obtaining approximate solutions to time-

dependent partial di�erential equations (PDEs) is the use of �nite di�erene teh-

niques, in whih the spatial domain is disretized into a grid or mesh, and the partial

derivatives are replaed with algebrai relationships between neighboring (losely-

spaed) grid points. The relative loseness of the grid points is alled the resolution,

and it is in general the ase that high resolution provides for high auray | that

is, good approximation to the underlying PDEs | but at the ost of a long time

for the omputation to be performed.

Adaptive Mesh Re�nement (AMR) is a lass of tehniques whih involve

varying the resolution throughout the simulation domain, and whih, in priniple,

provide a given degree of auray in a shorter amount of time than that required

for the appliation of �nite di�erening on a single, uniformly spaed mesh | what

we will all \unigrid" algorithms. In the disussion to follow, we will mainly refer to

82



methods whih have been developed for systems of hyperboli di�erential equations.

There is a host of literature and methods devoted to the solution of ellipti and

paraboli equations via adaptive mesh tehniques, however we will not delve into

suh matters here.

5.2 The Desire for `Adaptivity'

For any sophistiated simulation in whih a high level of auray is required, some

sort of adaptivity in the way the various physial quantities are represented on the

domain is desirable for two main reasons.

1. Computational Neessities. Any omputer system will have �nite re-

soures, and furthermore may harge the user a fee in proportion to the use of these

resoures. If the user wants to run a unigrid simulation to generate a highly aurate

representation of a physial system, he might desire a very large grid whih would

require storage alloation in exess of what is available on many omputer systems,

and even if the program �t in memory, it may take months to run the simulation. A

user's goal would probably be to run a program whih produes the desired amount

of auray, exeutes in a minimum amount of time, and onsumes a minimum of

the storage resoures on the system. AMR minimizes storage requirements by only

plaing �nely-spaed grid points where they are needed, and when they are needed,

and also minimizes omputation time by minimizing the number of grid points (and

hene the number of pointwise operations).

2. Unantiipated Resolution Requirements. It is often the ase that the

resolution requirements of a simulation (for a �xed loal auray) may not be

known a priori. A unigrid ode in whih data evolve toward the formation of

unantiipated small-sale features may leave the user no reourse but to terminate

the exeution and re-run the simulation with a higher resolution, thereby wasting

time and other omputing resoures. Thus it would be desirable to have an algorithm
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whih dynamially responds to the need to maintain auray in the simulation.

For several years, AMR has been an attrative idea for researhers in numer-

ial relativity [70℄, yet the implementation of AMR shemes has proeeded rather

slowly from the pioneering work of Choptuik [23, 24℄. During the Binary Blak

Hole Grand Challenge projet, it was noted by Choptuik [21℄ that simulation odes

in numerial relativity have tended to be fairly homogeneous from a \high-level"

perspetive, in that nearly all the odes being developed at the time used low-order

(seond-order) �nite di�erene tehniques on a single mesh, and had a basi stru-

ture of the form [21℄

Read initial state

for NUM STEPS

for NUM UPDATES or until onvergene

Update(Grid Funtion(s)) ! Grid Funtion(s)

end for

end for

Write �nal state

Choptuik pointed out that most of labor in developing these sorts of simulation

odes goes into the onstrution of stable, aurate updates. He promoted the idea

of using the AMR algorithm of Berger and Oliger (desribed below) as a way to

allow relativists to onentrate on the development of stable unigrid odes for a

serial arhiteture. The Berger and Oliger method would then allow for parallelism

and adaptivity to be provided automatially by the main program driver.

Berger and Oliger AMR, in General

The 1984 paper of Berger and Oliger [11℄ desribes an AMR algorithm in whih

the spatial domain is deomposed into a olletion of uniform, retangular grids

of various degrees of resolution, plaed throughout the omputational domain at

arbitrary orientations relative to one another. These grids an (and do) overlap, i.e.

parts of di�erent grids may ontain the same subset of the domain. Eah uniform
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grid is evolved separately, with boundary information supplied by other grids or

physial boundary onditions. Beause the uniform grids are evolved separately, the

Berger and Oliger algorithm allows users to onentrate on writing update routines

for unigrid appliations.

In this sheme, we start with a single uniform grid we all the base grid,

whih overs the entire domain and does not hange throughout the simulation.

We plae other grids \on top of" the base grid (i.e. we de�ne new grids whih

over a subset of the spae overed by the base grid) whih have �ner resolution,

in order to resolve features in the simulation. We an plae other, �ner grids on

top of these grids as determined by the auray requirements of the ode. The

riterion that determines when and where new grids are needed is an approximation

of the loal solution error, obtained via Rihardson expansion. Reall from Chapter

2 that, for suÆiently smooth funtions and for entered di�erene shemes, we an

expet the error to be given as an even power series in the mesh spaing h, where

the oeÆient funtions in this series are independent of h and thus we an obtain

loal approximations to these error funtions by omparing data from two grids of

di�erent resolution. Berger and Oliger used the term \trunation error" to refer

to what we have alled \solution error", and thus in this hapter we will use their

terminology in order to maintain onsisteny with related literature.

We begin on the base grid and integrate forward in time two steps. We also

start with the same initial data on a grid with twie the mesh spaing as the base

grid. Keeping the CFL fator � � �t=�x the same as that used for the base grid,

we evolve this oarse grid one step forward in time. The di�erene between the

data on the oarse grid at this time and the data on the base grid (restrited to the

oarse grid loations) gives a measure of the loal trunation error. Those loations

in the spatial domain whih ontain trunation errors larger than some user-de�ned

threshold value are \agged" as points where �ner resolution is needed.
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At this point there needs to be an algorithm for determining how the agged

points will be overed by �ner grids. Suh an algorithm is alled a \lustering

algorithm", beause by it we seek to luster the agged points into large regions

whih an be overed by �ner grids. Great are must be given to how this algorithm

will plae the new grids, in order that maximum omputational eÆieny be ahieved

[12℄. Covering a wide distribution of agged points with only one or two large grids

may be simple and diret but will waste large amounts of time omputing data at

loations whih do not require high resolution (perhaps defeating the very purpose

of using AMR). Too many small grids overing a olletion of points may mean high

ommuniation osts, as well as require extra regridding work in later iterations.

It is often helpful to de�ne a grid slightly larger than the region of those points

whih need the �ne resolution, suh that the grid also overs nearby regions whih

may require re�nement in the near future. If this \bu�ering" is done e�etively, it

will mean fewer agged points in the future and thus less work for the lustering

algorithm at a later time. After the points have been appropriately lustered, new

grids are de�ned to over the points appropriately. We all this \regridding."

We do not perform the tasks of measuring trunation error, lustering and

regridding at every time step, but rather only at ertain intervals (e.g. every four

time steps), primarily beause these tasks take nontrivial time away from the atual

work of simulation. The assumption underlying this is that the features in the

simulation will not hange \too rapidly."

If the gridfuntions begin to lose their smoothness properties, the Rihardson

expansion starts beoming a poor measure of the trunation error, and a typial

result of this is the alloation of �ne grids whih over nearly the entire domain.

Sine this is an undesirable outome, we require that the numerial evolution sheme

be dissipative in order to try to enfore smoothness in the gridfuntions.
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5.3 AMR vs. Higher-Order Unigrid

While AMR is one means of providing high auray in short time, another route

whih some researhers have taken is to use �nite di�erene operators whih are

better approximations to the underlying partial derivatives. This is ahieved by

extending the Taylor series expansion of these derivatives to higher order, and the

most ommon extension is to fourth order. While it an be rather diÆult to

onstrut suh higher-order operators whih still yield a stable evolution, the payo�

provided by higher order shemes has been enough to lure some researhers to

implement suh evolution odes [59℄. The payo� is in terms of the onvergene

behavior: For every doubling of the resolution in a seond-order aurate ode, the

trunation error goes down by a fator of 4, but for the same re�nement using a

fourth-order aurate ode, the trunation error goes down by a fator of 16. Thus

even fairly modest resolution an with fourth-order odes provide extremely aurate

solutions for suÆiently smooth phenomena. It is even to be expeted in a variety

of senarios that higher-order unigrid will yield better results (i.e. faster results for

a desired auray) than (seond-order) AMR. If the AMR sheme is only seond

order, it will have to extend to very high levels of re�nement to math the results

from a well-resolved fourth-order unigrid ode.

Given this observation, and the diÆulties involved with developing a sophis-

tiated AMR ode, some have asked the question, \Why should we use AMR when

fourth-order unigrid o�ers muh better onvergene?" An initial response stems from

the fat that adaptive methods are in some sense designed to resolve small features

in a simulation whih may not be easily preditable from the initial data. AMR

provides the funtionality to trak and resolve small-sale phenomena whih might

never appear in a unigrid simulation. Higher-order unigrid an do an exellent job

for smooth data, but it still annot resolve any features smaller than the (stati)

mesh spaing.
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We should also point out that, given a suÆiently general AMR algorithm

in whih we an take unigrid implementations and use them more or less diretly

within the AMR ode, and assuming that one an onstrut appropriate higher-order

interpolation operators for this AMR ode, then one should be able to inorporate

any unigrid tehnique within the AMR ode. Construting the higher-order in-

terpolation operators may be nontrivial, and one might �nd hallenges along the

boundaries of �ne grids, but there is nothing in priniple to prevent the inlusion

of higher-order tehniques within the AMR algorithm. Thus the development of

high-order unigrid odes and AMR odes, while these may at present appear to be

disparate and ompeting e�orts, an in priniple work together to provide signi�ant

inreases in omputing power.

5.4 The Need for EÆient Parallelization

Modern large-sale simulation pakages are typially run on large-sale omputer

systems, whih in reent times has meant some form of parallel omputing model.

Current parallel omputing platforms an range from the distributed-memory-distributed-

proessing arhiteture of a luster of PCs to a sophistiated distributed-shared-

memory system like the SGI Origin 2000. Parallel omputing is an exellent way

for an appliation to gain enormous inreases in speed, but only if that appliation

parallelizes well, i.e. that the overall omputation speed sales almost linearly with

the number of proessors.

Typial mesh-based simulations lend themselves well to \data-parallel om-

puting", for whih one performs domain-deomposition or \partitioning" on the data

set and sends one piee of the data set to eah proessor. (For a distributed memory

system, the size of eah piee is then limited by the amount of memory available to

a proessor.) For unigrid appliations, this partitioning an be fairly simple or even

trivial, but for an adaptive omputation the partitioning an be highly-nontrivial,
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due to the need for even \load balaning" aross all proessors. This load balaning

is essential if the omputation speed is to sale with the number of proessors.

Partitioning and load balaning aside, a prinipal diÆulty for parallel grid-

based simulations (adaptive or otherwise) lies in the need for di�erent proessors

to ommuniate with eah other. Typially this is seen along the boundaries of

the individual subdomains being simulated on eah proessor. Communiation ost

sales not only with the topology of the grid, but also with the number of proes-

sors. Communiation osts are typially determined on the basis of the lateny and

bandwidth of the network [84℄. The lateny of a ommuniations network is the so

alled \startup ost" required to establish a onnetion to send a message. The

lateny is independent of the length of the message. Bandwidth refers to the apa-

ity of a ommuniations hannel (a spei� path through the network) to transmit

information, and is typially given in bits per seond (bps).

Given a system with �xed bandwidth and lateny, one an imagine there

is some optimum problem size for a given number of proessors, or onversely an

optimum number of proessors for a given problem size [84℄. Taking the latter

view, we an see that if we were to break up the domain into very tiny piees and

distribute it on many, many proessors, the ommuniation osts would prohibit a

timely solution of the problem. Alternatively, if we divide the domain into only a

few piees on a few proessors, the inter-proessor ommuniation ost will be low,

but then we would not be taking advantage of the parallel superomputer. From

this, we an understand that for large omputations on many proessors, the inter-

proessor ommuniation an be so ostly that one an begin to see negative or

inverse saling, i.e. the user would be better o� re-running the simulation on fewer

proessors.

For grid-based-simulation odes, the need is not so muh for one proessor to

ommuniate with other proessors, but simply to aess the memory to obtain data
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whih were omputed using other proessors. Thus (as realized by Cray and others)

as long as the \memory link" is fast enough, the inter-proessor ommuniation per

se is not muh of an issue. However, shared-memory arhitetures like the older

Cray superomputers are falling out of fashion. On PC lusters, if one wants to

aess the memory on another motherboard, i.e. in a di�erent mahine, one has to

do so through the proessor(s) on the other motherboard, via a network onnetion.

For an adaptive mesh ode, ommuniation osts are not easy to antiipate.

One ould imagine a senario (admittedly extreme) in whih an adaptive mesh

ode, beause of high amounts of inter-proessor ommuniations, ould atually

take longer to exeute than the orresponding unigrid ode whih renders a solution

at the same auray as the adaptive ode.

In summary, if one wants to write a parallel AMR ode, great are is required

in writing the ode to help ensure load balaning and the use of the most eÆient

ommuniations as possible.

5.5 Towards Automati, Parallel AMR

Both AMR and parallelism are very desirable qualities to have in a simulation

ode, but both require signi�ant e�ort to implement. We note, however, that

many of the same tasks will be performed by any AMR simulation. These inlude

the alloation and dealloation of memory for new grids, interpolation of oarsely-

resolved data onto �ne grid ells (what we all \prolongation"), trunation error

estimation and lustering (for Berger and Oliger odes), message passing between

proessors, parsing of parameters, and general input and output. Given the generi

aspets of these tasks (i.e. they are largely independent of the physial problem

being modeled), one an imagine a omputing environment in whih these funtions

are provided as part of the pakage, thus freeing the user to onentrate on the

physis at hand. In partiular, one might desire an environment in whih a user
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supplies a set of �nite di�erene equations, initial data, and boundary onditions

written for the solution of his or her problem on a single uniform grid, but in whih

all the above-mentioned neessary omponents of a parallel AMR ode are then

generated automatially.

5.6 An Implementation of Berger and Oliger's Method

For our implementation of Berger and Oliger's method, we require that new grids

share boundaries with (olletions of) oarse grid ells. This means that we do not

allow grids with arbitrary orientation, but rather only grids with boundaries parallel

to those of the base grid.

5.6.1 Shadow Hierarhy

In addition to the integration of the equations of motion on the grid hierarhy, we

also ontinuously evolve the data on a preise opy of the grid hierarhy in whih

all grids are oarsened by a fator of two. We all this oarsened opy of the grid

hierarhy a shadow hierarhy [27℄, and the original hierarhy the base hierarhy or

main hierarhy. The shadow hierarhy is used at regridding times to estimate the

loal trunation error. The usual implementation of the Berger and Oliger method

amounts to the de�nition of a shadow hierarhy at eah regridding time, so we hoose

to be spared the e�ort of alloating and de-alloating storage every regridding time

and simply allow the shadow hierarhy to exist at all times. More importantly, the

shadow hierarhy eliminates the need to dupliate �ne grid storage at regridding

times, whih is a requirement of the original implementation of the Berger and

Oliger method. Thus we save memory and omputing time. The prie we pay

for this is that we evolve data on the shadow hierarhy at all times, not just the

regridding times, but the hope is that the time we save in not dupliating �ne grid

storage at eah regridding time makes up for this ost. The 2 : 1 re�nement between
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the base and shadow hierarhies requires a re�nement ratio of 2

p

: 1 between eah

grid level, where p is some integer. In our software, p is required to be 1.

5.6.2 Re�nement of Initial Data

Providing proper spei�ation of the data and grid struture at the initial time is at

least as ompliated as the AMR evolution of the data. We wish to ensure that we

begin the simulation with suÆient mesh re�nement to adequately resolve all the

features of the initial data, suh that the evolution does not aquire large amounts

of trunation error from the �rst evolution step. The initial regridding algorithm

an be summarized by the following pseudo-ode:

gfs = All grid funtions to be evolved (reside on Main and Shadow hierarhies)

l = Current level in do loop

l

f

= Finest level urrently alloated

l

max

= Finest level allowed in the simulation

te = loal trunation error, a grid funtion

G

l

= List of loations for new grids, obtained from lustering algorithm

Assign initial data on Main, level = 0

Assign initial data on Shadow, level = 0

l := 0 , l

f

:= 0

Repeat until (l

f

does not hange) or (l = l

max

)

l := l + 1

Take two steps on Main at level l

Take one step on Shadow at level l

Measure trunation error: te = gfs(Shadow) - gfs(Main)

Flag bad points: ags = where (te > Threshold)

Cluster agged points for plaement of new grids: G

l

= Cluster(ags)

if (G

l

not empty) then

l

f

:= l

f

+ 1

Alloate new grids on l

f

at loations spei�ed by G

l

Assign initial data on Main, level = 0...l

f

Assign initial data on Shadow, level = 0...l

f

end if

end Repeat
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Figures 5.1 and 5.2 show a series of steps in the re�nement of initial data onsisting

of a sharply-peaked gaussian.

5.7 Our Software

We are working to provide what we all a generi driver for parallel AMR appli-

ations. This generi driver is intended to run a simulation using user-provided

subroutines for (unigrid) integration of the equations of motion.

5.7.1 Infrastruture Provided by GrACE

The main set of routines for handing the operations on grids, and all aspets of

parallelism, is provided in a pakage alled GrACE written by Manish Parashar. In

earlier versions, GrACE was known as DAGH [78℄. GrACE is an objet-oriented set

of programming abstrations whih provides the abstrat programming interfaes

for the alloation and de-alloations of grids, maintenane of the grid hierarhy,

prolongation and restrition, and other operations involving grids. The lustering

algorithm supplied by GrACE is due to Paul Walker [101℄. A similar lustering ode

written by Reid Guenther [44℄ has been shown by Dae-Il Choi [20℄ to yield results

similar to those of Walker's ode.

5.7.2 Example: Solving 2D wave equation

The wave equation provides a natural hyperboli system from whih users may

develop their own simulations. (We hoose the wave equation rather than the trans-

port equation mainly beause the intended appliations typially involve simulation

of wave-like phenomena.) The examples we provide are in two spatial dimensions,

but the extension to three suh dimensions is straight forward. We give three dif-

ferent implementations for the solution of the 2D wave equation, and these go by

the names wave2d, wave2d1o, and amrwave2d1o. The wave2d example is a unigrid
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Figure 5.1: Initial grid re�nement of a sharply peaked gaussian �. Here we see six

di�erent levels of re�nement for the initial time in the evolution of sharp gaussian

pulse, on the domain (0; 0) � (x; y) � (10; 10). Data is shown on the main hierarhy,

with re�nement levels are denoted by Ll, where l = 0 is the base grid and l = 5

is the �nest grid. Currently the omputing infrastruture supplied by GrACE (see

setion 5.7.1) is on�gured suh that new grids are required to share boundaries

with the oarsest grid ells, hene the grids for levels 3, 4, and 5 span a domain

whih is twie the width of a level 0 grid ell. (This requirement will be relaxed in

a forthoming version of GrACE.) The orresponding trunation error measured on

eah grid is shown in Figure 5.2.
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Figure 5.2: Trunation error �̂ for the initial grid re�nement of a sharply peaked

gaussian shown in Figure 5.1. The trunation error threshold, used for agging

data points in need of further re�nement, was �̂ = 0:7max(�̂ ), where max(�̂) is the

maximum value of the trunation error on eah grid. Sine the evolution sheme

is seond-order aurate, we expet the leading order trunation error to go as

�

3

�=�x

3

, yet we see from this �gure that the trunation error we obtain does not �t

the pro�le of the third derivative of a gaussian (whih should be an odd funtion, and

the above graph shows even funtions), and thus the omputer ode is not yielding

the expeted results. This requires further study.
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implementation of the usual wave equation expressed in terms of seond-order par-

tial derivatives. This an be exeuted on one or many proessors via MPI. For the

Berger and Oliger system, it is absolutely essential to employ an evolution sheme

whih is dissipative, in order to maintain the neessary smoothness of grid fun-

tions and to avoid \over-gridding", i.e., applying �ne resolution to large areas of the

domain (where suh resolution is unneessary) as a result of poor trunation error

estimation. In pratie, we often prefer numerial shemes in whih the dissipation

is added expliitly, and we know how to add dissipative terms suh as B.5 for hyper-

boli systems ast in �rst-order form. With this in mind we provide a reasting of

wave2d into �rst-order form, alled wave2d1o. This implementation endowed with

the neessary AMR routines is alled amrwave2d1o.

Figure 5.3 shows a 1D slie through a 2D AMR evolution using amrwave2d1o.

Full 2D visualization apabilities for AMR data are still under development. Manish

Parashar wrote a set of routines for use with the AVS visualization pakage [1℄

whih do provide visualization of 2D AMR data, however this software pakage is

not readily available to many researhers.

5.7.3 Implementation of `Generi Driver'

The generi driver should ideally be able to take a set of user-supplied update and

initialization routines whih were written for a sequential, unigrid appliation and

generate a omplete parallel AMR ode. The aveat to this statement is that it

should be able to take an appropriately written set of user-supplied routines and

generate a parallel AMR ode. Essentially, this means routines whih are written

to operate on a uniform subset of the omputational domain and whih hek (in-

ternally) to determine if this subset inludes real, physial boundaries. In pratie,

it may take some work for a user to modify an existing sequential unigrid to run in

parallel, but from there the transition to parallel AMR ould be quite smooth.
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Figure 5.3: Animation of a 1D slie through a 2D evolution of the wave equation.

This shows the evolution of the massless salar �eld � (in Cartesian at spae) from

an initial gaussian pulse with

_

� = 0. Three levels of re�nement are shown: Level 0

(base grid) data is shown as a solid (blak) line, where we have omitted showing the

data points themselves to more learly show the data on additional levels. Level 1

data is shown as (blue) triangles, and Level 2 data as (red) squares. The domain is

(0; 0) � (x; y) � (10; 10), and we take the 1D slie along y = 5.

97



We intend to integrate the generi driver with the ompiler for the Rapid

Numerial Prototyping Language (RNPL), a programming language developed by

Robert Marsa and Matthew Choptuik [69℄. RNPL is designed to allow users to write

unigrid, sequential �nite di�erene simulation odes with minimal e�ort. RNPL pro-

vides automati support for routine tasks suh as I/O and memory management,

and allows the user to fous on the \physis" of interest. Thus RNPL allows for

signi�ant redutions in development time. The user spei�es initial data, bound-

ary onditions, and update routines in a symboli form, and the RNPL ompiler

generates a omplete simulation ode (in Fortran, C or C++). An ultimate goal of

our projet is to have the RNPL ompiler generate a fully funtional parallel AMR

appliation from RNPL soure ode.

5.8 Present and Future Projets

The spei� goal of this projet is for full integration with RNPL, so that authors of

RNPL soure an generate parallel AMR appliations automatially. Currently the

amrwave2d1o ode serves as a minimal `generi' driver, in whih the user an replae

the update routines and some funtion alls in the ode with their own expressions.

Prior to my work on this projet, previous implementations by Mijan Huq,

Manish Parashar, Dae-Il Choi, Robert Marsa, Matthew Choptuik and Tom Goodale

were available. Huq and Parashar wrote a 2D wave equation solver, as did Choi.

Parashar and Goodale later provided a dual 2D/3D wave equation solver. Marsa

and Choptuik had written a pakage alled bbh_dagh, whih used Parashar's DAGH

library (the predeessor to GrACE) and inluded a parallel unigrid ode for solving

the 2D wave equation, using many of the onstruts in the bbhutil library whih

are shared with RNPL. My work onsisted of seleting from these di�erent pakages

the most useful routines and rewriting many of them to serve the purposes of a

generi driver.
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The result is bbh_grae [55℄, an update of Marsa and Choptuik's bbh_dagh

distribution whih inludes Parashar's newest GrACE library, provided in a form

whih an automatially on�gure itself on a variety of omputing platforms. This

inludes a 2D wave equation solver featuring parallel AMR, using a three-level

leapfrog update sheme (previous implementations featured only two-level shemes

suh as MaCormak preditor-orretors). I rewrote the initial regridding rou-

tines of Choi to provide a lear interfae with the reursive integration routines of

Parashar, and to allow for a three-level update sheme. I made two improvements to

the existing dissipation operator, �rst by removing a ause of asymmetry indued by

the \weighted-average" operator being used, and seondly by replaing this (�rst-

order-aurate) operator with the seond-order-aurate Kreiss-Oliger dissipation

operator. I isolated elements of the ode whih would be \user-supplied" in the

\generi driver" senario, in whih the user supplies only unigrid updates and ini-

tialization routines and automatially obtains a parallel AMR ode. I expanded the

apabilities of GrACE by writing an additional reliable interfae for visualization

of 1D slies through the 2D data (an interfae to Matthew Choptuik's ser [22℄,

whih o�ers many features for data analysis not provided by xgraph [49℄, whih was

the only 1D visualization pakage with whih GrACE was designed to interfae),

and a utility to provide visualizations of the global grid struture as a funtion of

time. I began developing doumentation to supplement the existing GrACE/DAGH

doumentation. I added a feature for overriding the lustering algorithm to obtain

regridding diretives from a �le, whih I used to perform onvergene testing of

AMR evolutions. I interated regularly with Parashar, and provided onstrutive

feedbak regarding the features of GrACE and the previous parallel AMR imple-

mentations mentioned above. As a �rst step toward integration with RNPL, I wrote

a simple generi driver, using template �les (whih obey a simple, expandable and

generi HTML-like language I developed) and employed this with great eÆieny
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toward the reation of a 2D parallel AMR hydrodynamis solver (albeit one whih

was not perfetly ux-onservative) using existing sequential hydrodynamis update

routines. This demonstrated viability of the generi driver idea. In summary, I de-

veloped a ohesive and portable pakage whih serves as a prototype for generi

parallel AMR appliations, ontaining many of the features and utilities desired by

developers of omputational physis appliations. However, this ode still has dif-

�ulties whih remain to be fully resolved; as we saw in Figure 5.2, the trunation

error estimation, a key aspet of the Berger and Oliger sheme, is not yielding the

expeted results. This is perhaps the most signi�ant piee of work whih needs to

be ompleted in the near future.

Two additional features whih we onsider neessary for the generi driver

are the provision of 1D oordinate grid funtions (e.g. x, y) for update routines and

a \harateristi funtion" or \mask" to enode information about boundary ondi-

tions and other speial points on the grid. We would also like to provide a generi

interfae whih is Fortran 77 ompliant (the present version of GrACE provides

subroutine headers for Fortran 90) and a simple interfae to GrACE's hekpointing

apabilities. These e�orts are all underway and should be inorporated into the

software shortly.

Visualization remains an issue. It is our desire to provide visualization tools

for bbh_grae whih an be obtained by many researhers at minimal ost. Prelim-

inary work involving the Iris Explorer [19℄ pakage using its urvilinear lattie data

format has been promising. A �rst step in this diretion may be the development

of a program whih ollates the various data �les generated in an amrwave2d1o run

and outputs a single Explorer lattie �le. A group led by John Shalf at NCSA is

developing a publially-available software pakage for visualization of AMR data.

This pakage is alled LCA Vision [94℄, and it is ompatible with the IEEE output

whih bbh_grae an output using GrACE's output routines.
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The goal of providing an environment for automati development of parallel

AMR appliations has not yet been realized, but the work presented here represents

a nontrivial step toward the ful�llment of this goal.
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Chapter 6

Salar Aretion

This setion of the dissertation represents work in progress to simulate the dynam-

is of the Maxwell-Massive-Klein-Gordon (MMKG) system around a spinning blak

hole. Suh a system may have features similar to those found in magnetohydro-

dynami aretion aretion studies [53, 63℄. Currently we are working toward an

axisymmetri simulation on a Kerr bakground.

It has long been known that evolution of a linear salar test �eld in the Kerr

spaetime an be solved via separation of variables [18℄. The governing PDEs are

thereby redued to a system of ODEs, greatly simplifying the problem. Similarly,

Maxwell's equations in vauum an be also solved on a Kerr bakground by separa-

tion of variables [97℄. The reader may therefore wonder why we may be interested

in using �nite di�erene tehniques to solve for the evolution of salar and eletro-

magneti �elds on a Kerr bakground. In our system the salar �eld ats as a soure

for the eletromagneti �elds, and vie versa. The oupling between these �elds is

nonlinear. The author is not aware of any solution to this oupled system using sep-

aration of variables. Beyond this, the solution of this problem serves as a valuable

stepping stone toward the solution of the magnetohydrodynami equations in the

viinity of the blak hole (whih is not expeted to be obtainable via separation of
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Figure 6.1: Relationship between spherial oordinates (t; r; �') and ylindrial o-

ordinates (t; d; z; ') (We hoose the letter d beause r and � are already employed

in the form of Kerr-Shild metri.).

variables exept for a few simple ases).

6.1 Mathematial Preliminaries

6.1.1 Equations of Motion

We use the Kerr metri in spherial Kerr-Shild oordinates (t; r; �; ') to derive

the equations of motion for the salar and Maxwell �elds, beause the Kerr metri

takes on a fairly simple form in these oordinates. Having obtained the equations of

motion, we will want to perform the simulation in ylindrial Kerr-Shild oordinates

(t; d; z; ') (see Figure 6.1) beause the numerial treatment of the axis is less diÆult

in these oordinates than in spherial oordinates. Thus we will �nd it helpful to

hold both oordinate systems in mind, with the transformations

d = r sin � z = r os �

relating the two systems.
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In spherial oordinates, then, the metri takes the form
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For the ase of a = 0, this is the same form of the metri used in Chapters 3, and 4

(with variable a in Chapters 3 and 4 replaed by the letter b to avoid onfusion with

the blak hole spin parameter). For the Kerr bakground, we have the relations
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The square root of the determinant of the metri is

p
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The equations of motion for the salar �eld  (t; r; �; ') and the gauge �eld

A

�

(t; r; �; ') are given by

2 = U(j j) � ieA

�

g

��

(2�

�

 + ieA

�

 )� ier

�

A

�

 (6.1)

2A

�

+R

�

�

A

�

= ie (�

�

�

�

�� ��

�

�

�

) + 2e

2

A

�

��

�

: (6.2)

Beause the Kerr geometry is a vauum spaetime, we know from Einstein's equation

that the Rii tensor that appears in (6.2) is zero. We hoose the \Lorentz gauge"

in (6.1) suh that r

�

A

�

= 0. This gauge ondition then beomes a onstraint that

must be satis�ed in addition to the equations of motion.

The equations of motion for the omplex salar �eld and the Maxwell �eld are

fairly lengthy when fully written out as a system of �rst-order partial di�erential
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equations in ylindrial oordinates. The inlusion of these equations, roughly a

page eah in LaTeX format, is not thought to bene�t the reader in a signi�ant way.

The simulation ode is urrently not properly evolving the omparatively simple

equations for one massless, unharged real salar �eld on the Kerr bakground.

Thus we do not �nd it neessary or relevant to present the equations here.

6.1.2 Boundary Conditions

At the event horizon, the ausal struture of the spaetime implies that we require

no expliit boundary ondition. Rather, we simply solve the equations of motion,

using appropriate \forward" di�erene operators for spatial derivatives. We disuss

these further below.

The outer boundary is more problemati. If we were simply onsidering a

massless salar �eld we ould use the outgoing Sommerfeld ondition for the salar

and eletromagneti �elds. Sine the salar �eld has a nontrivial potential, both it

and the eletromagneti �elds to whih it ouples will not be well desribed by the

Sommerfeld ondition. Given that this simulation is a multidimensional one, the

option of using a very distant outer boundary (as we did in Chapter 3) is not feasible.

Another option involves varying the shift �, making �(r; �) ! 1 as r ! 1. This

sort of \montonially inreasingly boosted" oordinate system has been shown to be

very suessful for a at bakground spaetime [58℄, and it seems possible that this

method would also work well on a urved bakground. The urrent simulation ode

is not equipped to use a shift other than the shift of KS oordinates, so this option

has not been implemented. For the time being, while we improve other aspets of

the ode as well, the grid funtions are simply held �xed at the outer boundary (i.e.

we impose Dirihlet onditions at the outer boundary).

105



6.1.3 Initial Data

Our initial data an be spei�ed largely arbitrarily, however it must satisfy ertain

onstraints. One onstraint is the Lorentz gauge ondition,

r

�

A

�

= g

��

�

�

A

�

+ �

�

��

g

��

A

�

= 0; (6.3)

whih must be satis�ed on the initial spaelike hypersurfae. We solve (6.3) using

a simple presription: To avoid solving an ellipti equation on the spaelike hy-

persurfae, we solve for �

t

A

0

using existing data for the other �elds | whih at

the initial time would be freely spei�ed. Sine we are using the four-vetor po-

tential A

�

, we expet the magneti �eld B

i

= �

ijk

D
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to satisfy the onstraint

D

i

B

i

= 0: In the work of J. Hawley and Evans [52℄, the authors note that for nu-

merial evolutions involving smooth funtions (suh as salar �elds on a bakground

spaetime), this expetation is warranted, however more sophistiated methods suh

as their \onstrained transport" sheme are neessary for systems where the data

are not expeted to be smooth (e.g. in magnetohydrodynami systems). Our �nal

onstraint is Guass' Law
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�

is

the projetion tensor onto the spaelike hypersurfae, and �

e

= j

0

, where

j

�

= ie (�

�

�

�

�� ��

�

�

�

) + 2e

2

g

��

A

�

��

�
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York and Piran [102℄ disuss a method for solving (6.4) by deomposing E

i

on the

initial slie into longitudinal and transverse (divergene-free parts), E

i

= E

i

L

+E

i

T

,

allowing us to solve 6.4 as a Poisson equation

D

i

E

i

L

= D

i

D

i

U

where U is a salar funtion. Thus we are required to solve an ellipti equation at

the initial time. We intend to develop a multigrid solver to obtain the solution to

this ellipti equation. For early omputations, we will attempt to onstrut very

simple initial data whih satis�es the onstraints in losed form, if possible.

With the initial data spei�ed, we an then evolve all the �elds indepen-

dently (\free evolution") and use the onstraints (6.3), (6.4) to hek that the evo-

lution is proeeding onsistently, or we an solve the onstraints on eah spaelike

hypersurfae (\onstrained evolution") to insure that the evolution proeeds as self-

onsistently as possible.

What sort of initial data would orrespond to reasonable astrophysial se-

narios? We might like to onstrut a sort of salar MHD aretion disk, with the

salar �eld irling the blak hole about the equatorial plane, and magneti �elds

threading the disk and hole vertially. We would also need to speify initial time

derivatives for the data. Given the available de�nitions of \veloity" for the salar

�eld (f. Setion 1.4.2), we would not expet to be able to onstrut a uniform \Ke-

plerian" salar aretion disk, but we may be able to onstrut at least a uniform

mass distribution for the �eld, using the \boson star ansatz"  � exp(i!t). As an

initial step, we simply onsider axisymmetri initial data for an unharged, massless

salar �eld. Then, having veri�ed that the ode operates properly for this simple

ase, we will add additional features suh as mass and harge.
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6.2 Numerial Methods

The simulation ode, as it now stands, is intended to solve the Maxwell-Massive-

Klein-Gordon equations in axisymmetry. The spei�ations are as follows: We use

a Crank-Niholson update sheme with Kreiss-Oliger dissipation (as desribed in

the appendix). We exise a subset of the interior of the event horizon (inluding

the singularity), and refer to the boundary of this exised region as the \inner

boundary" of the omputational domain. At the inner boundary, we impose no

expliit boundary ondition, but rather solve the usual equations of motion using

\forward" and \bakward" di�erene operators. As advoated by Choptuik [29℄, we

use forward and bakward di�erene operators whih share the same leading order

trunation error as the entered di�erene operators (2.8) used throughout the rest

of the domain [29℄. For example, the forward di�erene operator in the d-diretion

has the form

�

d

uj

d=i�d;z=j�z

'

�4u

i;j

+ 7u

i+1;j

� 4u

i+2;j

+ u

i+3;j

2�z

:

Along the z-axis, we perform no �nite di�erene operations beause of the

oordinate singularity, and instead interpolate between the points on either side of

the axis.

The information regarding whih di�erene operations should be performed

(forward di�erening, exision, interpolation, et.) is enoded into the grid by means

of a harateristi or mask funtion. This is simply a funtion de�ned over the entire

grid, whih ontains di�erent numeri (integer) values to denote points whih should

be exised, bakwards di�erened, and so on.

6.3 Status and Future Work

We are �nding numerial instabilities near the inner boundary for z < 0, for the

simplest ase of a massless, unharged real salar �eld. The evolution near the inner
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boundary for z > 0 seems to proeed properly, and we are investigating the ause

of this error (and asymmetry) in the alulations. We hope to resolve this shortly,

and then inlude the dynamis for the full Maxwell-Massive-Klein-Gordon system

shortly thereafter. We urrently have a 2D ode for non-axisymmetri evolution of a

salar �eld in the equatorial plane of a Kerr bakground, whih we hope to integrate

with little diÆulty with the axisymmetri ode for a full 3D evolution.
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Chapter 7

Conlusions

We have onsidered the dynamis of salar �elds in senarios whih have some

orrespondene to ertain astrophysial systems. We studied the nonlinear dynamis

of fairly simple systems omposed of salar �elds in spherial symmetry, and yet we

found a rih set of previously unknown phenomena. For the ase of boson stars,

we showed that it is possible to indue Type I ritial behavior by imploding a

spherial shell of massless real salar �eld. We showed that there is mass exhanged

between the two �elds, and the omplex (boson star) �eld enters a ritial state

whih orresponds to an unstable boson star modulo the presene of a \halo" in the

tail of the ritial solution. This halo is presumed to be a remnant of the original

(stable) boson star, and does not seem to be part of the \attrator", the ritial

solution. One interesting point raised by this work onerns the behavior of neutron

stars under similar onditions: If the ritial solutions (whih an either implode

to form blak holes or explode) orrespond to boson stars on the unstable branh,

then unstable boson stars an explode; and if unstable boson stars an explode, then

perhaps unstable neutron stars | whih share marosopi stability features with

boson stars | an also explode.

The boson stars we onsidered are omposed of omplex �elds in whih the
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real and imaginary parts at like two real salar �elds whih are ompletely unou-

pled, exept via gravity. We showed that if we modify the temporal phase between

these two omponent �elds, it is possible to onstrut other star-like objets, whih

we have termed \multi-salar stars". These objets persist as stable quasi-periodi

solutions for very long times. We found, however, that the diret onstrution of

truly periodi solutions via a Fourier osine series ansatz did not yield the expeted

evolutions, but instead di�erent periodi (or quasi-periodi) solutions. This requires

further attention, yet our results, along with the seminal work by Seidel and Suen

[90℄, indiate that stable, long-lived star-like solutions are more ommon than pre-

viously assumed.

The work regarding adaptive mesh re�nement (AMR) represents nontrivial

progress toward the goal of a omputing environment in whih authors of simulation

odes for sequential, unigrid proessing an add parallel AMR features essentially

automatially. The work on initial data generation is the prinipal ontribution in

this area, however additional development tools have been reated to help future

developers of this omputing environment. There is a problem with the trunation

error estimation, whih an whih an result in ostly overgridding. Further devel-

opment and testing is neessary to produe a \programming systems produt" [17℄

whih will be useful to researhers worldwide.

Lastly we onsidered the simulation of a harged salar �eld on a Kerr bak-

ground. This was intended as a test problem for the AMR system, as a possible

\toy model" of hydrodynamial aretion, and as a new dynamial study in its own

right. We look forward to pursuing this investigation in the future, working towards

the goal of simulating magnetohydrodynamial aretion in urved spaetimes.
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Appendix A

Boson Star Mode Frequenies

In this appendix we have tabulated some sample values from the perturbation theory

alulations desribed in Chapter 3. The values and unertainties expressed in the

table aptions were determined by integrating (3.33) and (3.34) to various maximum

radii, for a range of error toleranes in the integration routines. The values and

unertainties given in the tables were hosen to express the variation in our results.
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Table A.1: Shooting Parameters: Fundamental Mode. The values of �

0

(0) are exat.

Other quantities are given within an unertainty of �1 in the last signi�ant digit.

�

0

(0) ! Æ�

00

(0)=Æ 

1

(0) �

2

6.0E-02 1.0417E+00 1.68E-01 0.28E-03

1.0E-01 1.0727E+00 0.29E+00 0.67E-03

1.4E-01 1.1067E+00 0.43E+00 1.11E-03

1.8E-01 1.1440E+00 0.59E+00 1.41E-03

2.2E-01 1.1849E+00 0.77E+00 1.31E-03

2.6E-01 1.2299E+00 0.98E+00 0.45E-03

2.7E-01 1.2419E+00 1.04E+00 0.05E-03

2.8E-01 1.2542E+00 1.10E+00 -0.43E-03

3.0E-01 1.2796E+00 1.24E+00 -1.71E-03

4.0E-01 1.4281E+00 2.08E+00 -1.84E-02

5.0E-01 1.6215E+00 3.45E+00 -7.09E-02

6.0E-01 1.8777E+00 5.79E+00 -2.11E-01

Table A.2: Shooting Parameters: First Harmoni Mode. The values of �

0

(0) are

exat, ! is given within an unertainty of �1 in the last signi�ant digit, and the

other quantities are given within an unertainty of �2 in the last signi�ant digit.

�

0

(0) ! Æ�

00

(0)=Æ 

1

(0) �

2

6.00E-01 1.8777E+00 0.63E+01 0.22E+00

7.00E-01 2.2230E+00 1.13E+01 0.32E+00

8.00E-01 2.6963E+00 2.09E+01 0.43E+00

9.00E-01 3.3536E+00 4.11E+01 0.53E+00

1.00E+00 4.2714E+00 0.84E+02 0.54E+00

1.10E+00 5.5471E+00 1.77E+02 0.42E+00

1.12E+00 5.8555E+00 2.07E+02 3.05E-01

1.14E+00 6.1842E+00 2.41E+02 1.46E-01

1.15E+00 6.3566E+00 2.59E+02 4.30E-02

1.16E+00 6.5346E+00 2.80E+02 -8.11E-02

1.17E+00 6.7184E+00 3.02E+02 -2.28E-01

1.18E+00 6.9083E+00 3.26E+02 -4.01E-01

113



Appendix B

Finite Di�erene Algorithm for

Spherially-Symmetri Evolution

Code

This appendix desribes the numerial evolution sheme used in Chapters 3 and

hap:msshap. We approximate the ontinuum �eld quantities f�; a;�

1

;�

2

;�

3

;

�

1

; �

2

; �

3

; �

1

; �

2

; �

3

g by a set of grid funtions, quantities whih are obtained via

the solution of �nite di�erene approximations to the partial di�erential equations

(3.8), (3.11) - (3.14) on a domain whih has been disretized into a regular mesh

(i.e. lattie) with mesh spaing �r in spae and �t in time. For a grid funtion u,

we denote the value of the grid funtion in the mesh loation j in spae and n in

time by u

n

j

, e.g,

�

n

j

' � (n�t; (j � 1)�r) ;

where � (n�t; (j � 1)�r) is the orresponding value for the ontinuum solution.

The initial data is obtained via \shooting", a standard method of solving

ordinary di�erential equations, in a way essentially the same as that found in [86℄.
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The numerial method used for evolving the system of equations is a leapfrog sheme,

whih is an expliit sheme requiring data at two previous time steps, n and n� 1,

to ompute a value at the next time step n + 1. Given a disretization of sale of

order h in time and spae, the leapfrog sheme is O(h

2

) aurate. Throughout the

mesh, the ratio �

CFL

� �t=�r is kept at a onstant value, whih must be less than

unity due to the stability requirements of the leapfrog sheme.

To aid in the presentation of the di�erene equations, we de�ne the following

operators [23℄:

�

t

0

u

n

j

=

u

n+1

j

� u

n�1

j

2�t

�

r

0

u

n

j

=

u

n

j+1

� u

n

j�1

2�r

�

r

+

u

n

j

=

u

n

j+1

� u

n

j

�r

�

r

3

u

n

j

= 3

u

n

j+1

� u

n

j�1

(r

j+1

)

3

� (r

j�1

)

3

:

We also de�ne the averaging operator

�

r

+

u

n

j

=

1

2

�

u

n

j+1

+ u

n

j

�

;

whih takes preedene over other algebrai operations, e.g.

�

r

+

 

fg

2

h

!

=

�

r

+

f

n

j

�

�

r

+

g

n

j

�

2

�

r

+

h

n

j

:

The evolution equations, whih are applied to eah �eld f�

i

;�

i

; i = 1; 2; 3g

an then be written as:

�

t

0

�

n

j

= �

r

0

�

�

a

�

�
n

j

(B.1)

�

t

0

�

n

j

= �

r

3

 

r

2

�

a

�

!
n

j

� 2 (�a�)

n

j

(B.2)

115



where the last term in the evolution equation for � is not applied to the massless

�eld.

Our boundary onditions are as follows: First, by regularity at the origin,

we have

�

n

1

= 0

for all n. To obtain �

n+1

1

we employ a \quadrati �t" at the advaned time,

�

n+1

1

=

4�

n+1

2

��

n+1

3

3

; (B.3)

whih is based on the regularity ondition, lim

r!0

�(t; r) = �

0

(t) + r

2

�

2

(t) + � � �.

A signi�ant hallenge in the numerial solution of these equations is the

problem of the outer boundary ondition for the massive �eld. Numerous authors

have proposed methods to handle this. Having tried various methods inluding �rst

order expansions of the dispersion relation [89℄, sponge �lters [60℄, and operator

splitting [7℄, we were unable to obtain a sheme whih produed results superior to

the simple Sommerfeld ondition one uses for massless �elds [54℄. Sine, however,

the Sommerfeld ondition is still inadequate for massive �elds, we have hosen to

run our simulations on a grid large enough that the outer boundary is out of ausal

ontat with the region of interest for the time the simulation runs. So, for example,

if we are interested in a region 0 � r � 50 and times 0 � t � 400, then we plae

the outer boundary r

J

� 450. (While unbounded phase veloities are a feature of

the Klein-Gordon equation, we an argue on physial grounds as well as see quite

learly in simulations that it is the group veloity whih is the important quantity

in the numerial evolutions, and this is sub-luminal.) Reent work using a shifted

oordinate system, with a shift vetor that is vanishing in some region near r = 0 but

inreases to unity as r ! r

J

, shows promise as a means of handling the hallenge of

the boundary ondition for the massive �eld [58℄, and this method may be employed

in future work. Thus the outer boundary ondition we employ is [26℄:
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�

n+1

J

=

 

3

�t

+

3

�r

+

2

r

J

!

�1

0

�

4�

n

J

� �

n�1

J

�t

+

4�

n+1

J�1

� �

n+1

J�2

�r

1

A

(B.4)

and an analagous equation is used for eah � variable.

After these evolved variables are obtained at the n+1 time step, we apply a

form of numerial dissipation advoated by Kreiss and Oliger [65℄. This is applied

to both �

n+1

j

and �

n+1

j

in the same manner. So, for instane we set

�

n+1

j

:= �

n+1

j

�

�

16

�

�

n�1

j+2

� 4�

n�1

j+1

+ 6�

n�1

j

� 4�

n�1

j�1

+�

n�1

j�2

�

; (B.5)

where � (0 < � < 1) is an adjustable parameter: typially, we use � = 0:5.

The preeeding equations desribe the \evolution" aspet of the ode. The

other variables are evolved in a \onstrained" manner, i.e. they are obtained on the

spaelike hypersurfae n + 1 after the �elds �

n+1

j

and �

n+1

j

have been alulated.

The �eld values �

n+1

j

are obtained by updating the value at the outer boundary

j = J aording to

�

t

0

�

n

J

= +

�

�

a

�

�
n

j

(B.6)

and then integrating inward from j = J to j = 1 along the spatial hypersurfae at

n+ 1:

�

r

+

�

j

= �

r

+

�

j

: (B.7)

The Hamiltonian onstraint (3.11) an be solved at eah time step one all

the �eld variables have been omputed for the advaned time step. We use the

variable A � ln a to avoid loss of preision near the origin in the following �nite

di�erene approximation, whih is evaluated at the advaned time step n+ 1:

�

r

+

A

j

= �

r

+

 

1� e

A

2 r

+

r

2

h

�

2

1

+�

2

2

+�

2

3

+�

2

1

+�

2

2

+�

2

3

+ e

A

�

�

2

1

+ �

2

2

�i

!

j

:

(B.8)
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This equation is solved using a pointwise Newton iteration, i.e. given a value

of A

n+1

j

(suh as A

n+1

1

= 0 at the origin), we �nd the next value A

n+1

j+1

outward

along the spatial hypersurfae by solving (B.8) via Newton's method.

The sliing ondition an be solved one the �eld variables and the metri

funtion a have been obtained at the advaned time step, using the following linear

algebrai relation:

�

n+1

j+1

= �

n+1

j

�

(1=�r) + Z

(1=�r)� Z

; (B.9)

where

Z � �

r

+

 

a

2

� 1

2r

!

j

+

�

r

+

a

j

�

r

+

a

j

� �

r

+

h

ra

2

m

2

�

�

2

1

+ �

2

2

�i

j

:
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Appendix C

Details of Linear Stability Analysis

This appendix desribes the details regarding the boson star stability analysis dis-

ussed in Chapter 3. Following Gleiser and Watkins [43℄, we write the most general

time-dependent, spherially-symmetri metri as

ds

2

= �e

�(t;r)

dt

2

+ e

�(t;r)

dr

2

+ r

2

d
;

and deompose the omplex massive �eld �(t; r) via

�(t; r) = [ 

1

(t; r) + i 

2

(t; r)℄e

�i!t

; (C.1)

where  

1

and  

2

are real.

In these variables, the Hamiltonian onstraint and sliing ondition an be

written as

�

0

=

1� e

�

r

+ r

�

e

���

h

(

_

�

1

+ ! 

2

)

2

+ (

_

�

2

� ! 

1

)

2

i

+  

02

1

+  

02

2

+ e

�

( 

2

1

+  

2

2

)

�

(C.2)

�

0

= �

0

+ 2

e

�

� 1

r

� 2re

�

( 

2

1

+  

2

2

) (C.3)

where a prime (

0

) denotes �=�r and an overdot (_) denotes �=�t.
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The Klein Gordon equation yields:
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and
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Another equation we will �nd useful is G

�

�

= 8�GT

�

�

, whih evaluates to

e

��

�

�

0

� �

0

2r

+

1

2

�

00

+

1

4

�

02

�

1

4

�

0

�

0

�

� e

��

�

1

2

�

�+

1

4

_

�

2

�

1

4

_�

_

�

�

= e

��

�

_

�

2

1

+

_

�

2

2

+ 2!(

_

�

1

 

2

�

_

�

2

 

1

) + !

2

( 

2

1

+  

2

2

)

�

�e

��

( 

02

1

+  

02

2

)� ( 

2

1

+  

2

2

): (C.6)

We use equations (C.2) through (C.4) to obtain the equilibrium solutions,

by setting

�(t; r) = �

0

(r) (C.7)

�(t; r) = �

0

(r) (C.8)

 

1

(t; r) = �

0

(r) (C.9)

 

2

(t; r) = 0: (C.10)

The equilibrium equations are then given by:

�
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=

1� e

�
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e
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(C.11)
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(C.12)
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We now introdue four perturbation �elds|Æ�(t; r), Æ�(t; r), Æ 

1

(t; r) and Æ 

2

(t; r)|

and expand about the equilibrium on�guration by writing:

�(t; r) = �

0

(r) + Æ�(t; r) (C.14)

�(t; r) = �

0

(r) + Æ�(t; r) (C.15)
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These last expressions are substituted into (C.2), (C.3), (C.4) and (C.6) to

obtain the following equations for the perturbed quantities:
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The four equations above an be manipulated suh that two variables, Æ�

and Æ 

2

are eliminated, leaving us with only two equations in two unknowns. To

obtain the �rst of these two equations, we subtrat (C.18) from (C.20) to get
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To obtain the other equation, we di�erentiate (C.19) with respet to r, and

substitute the resulting expression, along with (C.18) and (C.19), into (C.21) to get
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where, di�erentiating (C.11) with respet to r we have
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(Note that (C.22) omits a fator of exp(�

0

) whih one �nds in the � Æ�=(r

2

�

2

0

) term

of equation (34) in [43℄.) For the stability analysis, we assume a harmoni time

dependene, i.e.,

Æ 

1

(t; r) = Æ 

1

(r)e

i�t

Æ�(t; r) = Æ�(r)e

i�t

:
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Note that (C.23) and (C.24) ontain only seond derivatives with respet to time.

There are good arguments for assuming �

2

is purely real [61, 43℄, so we an determine

instability by simply looking for instanes where �

2

< 0.

As a further onsideration, we note that the boson star system admits a

onserved Noether urrent,
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for whih the orresponding harge or \partile number" is
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Conventional stability analysis (see, e.g., [95℄) demands that we onsider

only perturbations for whih the total harge is onserved. Thus we ompute the

variation in the harge, ÆN , and work to ensure ÆN = 0. In pratie, sine we ut

o� the grid at �nite radius, it makes sense to onsider the funtion ÆN(r), the total

harge enlosed in a sphere with surfae area 4�r

2

. This quantity is

ÆN(r) =
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where primes denote �=�~r. (Note that (C.27) ontains a term involving Æ 

0

1

, whih

was not inluded in equation (35) of [43℄.) We then demand that ÆN ! 0 as r !1.

The boundary onditions are as follows:

At r = 0:
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0

= 0
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Æ� = 0

Æ�

0

= 0:

As r !1:

ÆN ! 0

Æ 

1

! 0

Æ�! 0:

To solve the system (C.23) and (C.24) subjet to the above boundary ondi-

tions, for a given value of �

0

(0), we resort to the method of \shooting," �rst for the

equilibrium solutions, then for the perturbed quantities. Spei�ally, we hoose a

value for ! and solve the equilibrium equations numerially by integrating outward

from r = 0. We do this repeatedly, performing a \binary searh" on ! (as desribed

in [86℄) until the boundary onditions for the equilibrium quantities are satis�ed.

Due to the linearity of the problem, we an hoose Æ 

1

(0) arbitrarily. We then

have two parameters left, namely �

2

and Æ�

00

(0). To make matters easy at �rst, we

onsider perturbations very lose to the transition between stability and instability.

At the transition point, �

2

is zero. Thus for boson stars near the transition point,

we hoose �

2

= 0 and shoot on the parameter Æ�

00

(0) until the boundary onditions

are satis�ed. As Gleiser and Watkins [43℄ note, the transition point ours at the

maximum boson star mass; so we an take two slightly di�erent equilibrium solutions

near the maximum mass and subtrat them to generate solutions whih should agree

with those obtained from the perturbation problem. We use this method to obtain
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a trial value of Æ�

00

(0), and also as a way of heking the �nal solution we obtain

from the perturbation analysis.

For more general on�gurations (�

2

6= 0), we hoose a value of �

2

and shoot

on Æ�

00

(0) until we �nd ÆN at the outer boundary of the grid to be less than some

tolerane value. Then we use the fat (gleaned from experiene) that if �

2

is too

large (too positive), ÆN will have a loal minimum, the value of whih will be less

than zero (i.e., ÆN(r) will dip below zero and then turn bak up at larger radii). If

�

2

is too low there will be no suh loal minimum. We use these two riteria to selet

the value of �

2

via a binary searh. Thus our two-dimensional eigenvalue-�nding

algorithm onsists simply of two (nested) binary searhes, one in eah diretion: For

eah value of �

2

tried, a full binary searh on the parameter Æ�

00

(0) is performed

to drive ÆN(r

max

) ! 0. Then the solution of ÆN(r) is examined for the behavior

desribed above, and a new value of �

2

is seleted, and so on until both Æ�

00

(0) and

�

2

have been found to some desired preision.
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