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ABSTRACT

We present the engineering underlying a consumer application to help music industry professionals find audio clips
and samples of personal interest within their large audio libraries typically consisting of heterogeneously-labeled
clips supplied by various vendors. We enable users to train an indexing system using their own custom tags (e.g.,
instruments, genres, moods), by means of convolutional neural networks operating on spectrograms. Since the
intended users are not data scientists and may not possess the required computational resources (i.e. Graphics
Processing Units, GPUs), our primary contributions consist of i) designing an intuitive user experience for a local
client application to help users create representative spectrogram datasets, and ii) ‘seamless’ integration with a
cloud-based GPU server for efficient neural network training.

1 Introduction

This paper describes a product developed to meet a
need expressed by music composers, producers and
supervisors: personalized audio tagging. These music
industry professionals typically rely on large quantities
(e.g. terabytes) of musical audio “clips” to ply their
trade, and rely on music tagging to search through their
available sounds. Often these clips are part of packages
purchased from vendors who do not follow uniform
criteria when generating metadata tags, resulting in het-
erogeneous, contradictory tags which make the search
challenging. Furthermore, these tags are “burned in”
and do not change with the user’s preference, whereas
some users want to create their own tags for person-
alized descriptive criteria such as mood, feel, timbre,
etc.

Rather than being an issue of mere metadata resolu-
tion, this use case necessitates a method relying on

audio features which may be difficult to quantify on the
front-end. Since the work of Lee et al.[1], the increas-
ingly popular method of applying convolutional neural
networks (CNNs) to audio spectrograms has demon-
strated great success as a flexible and robust method
for audio feature selection [2, 3] and subsequent classi-
fication. This approach has been applied successfully
to supervised classification problems as varied as chord
recognition [4], genre [5, 6], tempo [7], and artist [8].
In particular, using a mel-frequency scale for the spec-
trogram has been shown to be particularly powerful [9].
CNNs can be robust with respect to noisy labels [10],
and relatively small datasets.

CNNs are used for inference in consumer products such
as the Track Assistant in Neutron 2 [11], but have yet to
be widely offered for training. Two barriers to training
by end users are their lack of graphics processing units
(GPUs) for efficient neural network computation, and
the lack of a user-friendly interface for dataset creation.
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2 System Design

We overcome such barriers by training in the cloud on
servers with GPUs, and provide a GUI-based client
to assist users in both dataset creation and “sorting”
(i.e. generating tags for) new files. An overview of the
system’s operation in shown in Figure 1.
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Fig. 1: Overview of Vibrary operation procedure.

Fig. 2: Screenshot for part of the dataset creation pro-
cess, where tags are both suggested by the sys-
tem and added by the user.

2.1 Client

The client is built in C++ using JUCE.1 An example
of the graphical user interface (GUI) can be seen in
Figure 2. Initially the user is presented with a “demo
mode” with pretrained network weights for 15 different
classes of instruments. The user can immediately use
this to “sort” large quantities of audio files on their
hard drives by running the network in inference mode

1JUCE: http://juce.com

to associate tags with these files. (This demo model
can later be replaced with a newly-trained model, and
multiple models may be run in succession for multiple
tags.) The client helps users create a training dataset
by allowing them to drag and drop (directories of) au-
dio files into the interface, at which point initial tags
are suggested based on metadata. Once the user has
supplied tags to associate with these files, the program
generates spectrograms and uploads these to the server
(see Section 2.2). After the model is trained, the client
downloads the model weights in the form of a Protobuf
file. Then, additional audio files on the users’ machine
can have tags associated with them – a process we refer
to as “sorting” – as the client creates spectrograms for
these and runs a local (C++) version of the network in
inference mode.

2.2 Server and Neural Network

We use a Dockerized Python build on an Amazon EC2
instance that spins up at a time estimated to coincide
with the completion of the data upload to S2 storage.

For the neural network, we employ an existing Open
Source code [12], which applies a VGG-style net-
work with 3x3 kernels, Dropout, and ELU activa-
tions. Although more sophisticated models are avail-
able [13, 14, 15], we find this model to be sufficiently
fast and accurate for our use case: Training time on
spectrograms for 1 GB of audio typically takes a few
minutes or less, and ‘accuracy’ is determined much
more by the user’s data curation than by the model type
or whether the default of Transfer Learning [6, 16] or
random initialization is used.

Thus ours is not an end-to-end model [17], rather we
rely on the music domain assumptions inherent in using
mel spectrograms. This serves three purposes particular
to our use case:

1. Reduced Upload Size. The corpus of audio files
in our typical datasets so far have a size on the or-
der of gigabytes, which would require long upload
times. Producing spectrograms locally reduces
this by a factor of 20 to 80. This also allows spec-
trograms to be archived for re-use with a minimal
storage footprint.

2. Compliance with Licensing. Uploading raw au-
dio from a commercial package may constitute
unauthorized distribution, however our spectro-
grams lack phase data thus precluding full audio
reconstruction.
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3. Performance on ‘Small’ Datasets. Although
end-to-end models with waveform front-ends can
offer the highest accuracy for datasets of millions
of instances [18], we expect that users may sup-
ply significantly less, for which a spectrogram
front-end is likely to offer superior performance
[19].

Data augmentation is currently offered in the form of
shifting in time and mel-frequency, stretching in time,
and mixup. We intend to include SpecAugment [20]
soon. A small amount (0.01) of label smoothing is also
applied to allow for tolerance to mislabeled examples.

2.3 Considerations for End Users

End users are not data scientists, nor are audio clip
packages created with data curation in mind. These
have a combined effect on the accuracy of the model.
For example, clips designated as ‘Snares” by vendors
may contain highly “effected” sounds with sustained
high frequency content more typical of cymbals. This
can result in mixing between “Cymbal” and “Snare”
classes, causing the accuracy to suffer.

We supply defaults for user-selectable settings appro-
priate for the design goal of classifying “short” audio
clips for music composition and supervision, in which
the sonic characteristics are consistent during the clip,
e.g. a default duration of 3 seconds for spectrograms
(zero padded), and down-mixing to mono by default.
We are currently developing guidelines to suggest the
best settings for other use cases.

3 Results

As noted earlier, the accuracy of the classifications
will depend on the ‘cleanliness’ and size of the users
dataset. As an aid, we provide users with a sense of
how much effort on their part will correlate with classi-
fication accuracy, which will also depend on the type
of audio being classified. Figure 3 shows average re-
sults for classification accuracy on a testing dataset as
a function of the number of audio examples used in
the training set, for example cases of either 12 audio
effect classes[21], 10 genre classes[22], or 9 instrument
classes2.

2The authors wish to thank composer Kyle J. Baker for assistance
in creating a custom dataset of 9 instrument classes
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Fig. 3: Testing accuracy as a function of number of
example audio files in the training set. This can
be used to give users an estimate of how many
sample files to supply per class.

4 Summary

Vibrary is a tool to help end users personalize tags of
musical audio clips, by means of a client-server model
which offloads neural network training to cloud-based
GPU servers, with spectrograms generated locally to
reduce upload sizes and avoid licensing issues. We
are interested to see how users make use of this utility,
particularly in terms of training for unanticipated cate-
gories. Interested parties should contact the authors to
obtain a demonstration copy of the software.
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